REPORT DOCUMENTATION PAGE

AFRL-SR-BL-TR-01-

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviev iining the

data needed, and completing and reviewing this collection of information. Send gomments regarding this burden estimate or any
this burden to Department of Defense, Washington Headquarters Sevices, Dlrectorale for Information Operations and Reports (C
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty fo

valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

O F% o202

1 currently

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE
31-01-2001 Final

3. DATES COVERED (From - T0)
1 Nov 97 - 31 Oct 00

4. TITLE AND SUBTITLE

Fusion as an Operation on Formal Systems: A Formal Framework

for Information Fusion

5a. CONTRACT NUMBER

5b. GRANT NUMBER
F49620-98-1-0043

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Mieczyslaw M. Kokar, Jerzy Weyman, Jerzy A. Tomasik

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Northeastern University
360 Huntington Avenue
Boston, MA 02115

8. PERFORMING ORGANIZATION REPORT
NUMBER

NEU-COE-ECE-MMK-2001-01

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFOSR/NM

801 North Randolph Street
Arlington, VA 22203-1977

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

e 2

12. DISTRIBUTION / AVAILABILITY STATEMENT

AHFORCEOFF&OFSC!EN“’FICRESEARCH(AFOSH)

13. SUPPLEMENTARY NOTES

NOTICE OF TRANGYITTAL DTIC. THIS TECHC/L REPORT

HASQ?EN RﬁVaEWEDANi)MPP?RBnDR)HWR&EASE

14. ABSTRACT

This project was focused on a formal framework for analyzing and developing information
fusion systems. Category theory was selected as the formal basis for specifying information
fusion systems. A formal definition of “information fusion” was introduced. Various kinds of
fusion were defined, their properties and inter-relationships analyzed. An initial ontology
of information fusion was presented. A procedure for developing information fusion systems
using formal methods was proposed. Examples of reasoning about measures of effectiveness of
information fusion systems were shown. Towards this goal fuzzy logic was formally specified
in the Slang language and properties of information fusion were proved. This showed that
within this formal framework one can reason about the system being developed in the
specification and design phases, rather than after deployment. Finally, the selection of
wavelet based features for ATR was investigated within the formal framework.

15. SUBJECT TERMS

Information Fusion, Formal Methods, Design Framework, Logic, Category Theory

16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER | 19a. NAME OF RESPONSIBLE PERSON
OF ABSTRACT OF PAGES
; a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (include area
181 code)
b,
E Y

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

'FINAL REPORT

Project title:

Fusion as an Operation on Formal Systems:
A Formal Framework for Information Fusion

Grant no: F49620-98-1-0043
AFOSR/NM

PI: Prof. Mieczyslaw M. Kokar
Department of Electrical and Computer Engineering

Northeastern University
360 Huntington Avenue
Boston, MA 02115

April 9, 2001

20010427 099

Investigators:
Professor Mieczyslaw M. Kokar (PI)
Professor Jerzy Weyman (Co-PI)
Professor Jerzy A. /Tomasik (Co-PI)

Hongge Gao (Ph.D. student)
Jiao Wang (Ph.D. student)
Gulsah Cakiroglou (M.S. student)
Jingsong Li (M.S. student)
Marek Malczewski (M.S. student)

Contents

1 Project Overview
1.1 Summary of Results
2 Fusion as an Operation on Formal Systems
2.1 An Information Fusion System L0
2.2 First-level Decomposition of the IFS
2.3 Formalization of Information Fusion
2.3.1 Introduction
2.4 The Fusion Problem L ..
241 DataFusion
2.4.2 DiSCussion e e e e e e e e e e
2.5 Decision Fusion e
2.6 Results. e e
2.6.1 The “subclass” Relation
2.6.2 Decision Fusion as a Subclass of Data Fusion
2.6.3 When is decision fusion equivalent to data fusion?
2.7 Classification of Fusion Problems
2.7.1 Examples. e
2.8 Data Association e e e e e e
2.9 Syntactic vs. Semantic Fusion oL oL
2.9.1 Syntactic Theory Construction
2.9.2 Semantic Model Construction
2.10 The Fusion Operator
2.11 Example L e
2.11.1 Scenario e e e e e e e e e e e e e
2.11.2 Formalization of Initial Knowledge
2.11.3 Formalization of Fusion in the Example
2.11.4 Reasoning about the Fusion System
2.11.5 Summary of the Example
3 Designing Information Fusion Systems
3.1 Towards a Reference Model for Information Fusion
3.1.1 ProcessModel e
3.1.2 Relationship Analysis oL,
3.2 FIFF: Formal Information Fusion Framework

3.2.1 Problem Statement
322 UseCase: DesignanSFS.
3.2.3 Information Fusion Ontologies
3.2.4 Specification Synthesis Lo oo
3.2.5 FIFF: Features . . . v v v v v v v e e e e e e e e e e e e e
4 Reasoning About Uncertainty in the Design Phase
4.1 Introduction e e e e e e
4.2 Fuzzy Information Processing
4.2.1 Construction of Fuzzy Set Theory Library
422 Fuzzy Sets
423 Fuzzy Numbers
4.2.4 Fuzzy Operations e e e e
4.2.5 Fuzzy Information Processing
4.2.6 Fuzzification e
427 FUuZZy TEASOMING o v v v o v e e e e e e e e e e e
4.2.8 Defuzzification e
4.3 An Example: Fuzzy Edge Detection e e L
4.3.1 Edge Detection Algorithm ’
4.3.2 Fuzzy Edge Detection
433 Resultsand Analysis oL
4.4 Conclusions and Future Work e e e
5 Wavelet-Based Features for ATR
51 Introduction e e e e e e e e e e
5.2 Formulation of the Problem
5.3 Classification Relations, EPEP
5.3.1 Entropy based classification
5.4 Experimental Setup
5.5 Simulations e e e e e e e e e e e e e e e
56 Results o o e e e e e e e e e e e
5.7 Conclusions and Further Research
6 Goal-Driven Autonomous Decision Fusion
6.1 Introduction e e e
6.2 Problem Formulation
6.3 Outline of the Solution 0
6.4 ProofoftheSolution
6.5 Conclusions i e e e e e
7 Supplementary Information
7.1 Relevancetothe AirForce
7.2 Personnel Supported
7.3 Publications That Resulted From This Project
7.4 Interactions/Transitions

8 Appendix A: Code for Chapter 3 86

8.1 Rectangle/Triangle Recognition Problem 86
8.2 Geometry Ontology o 90
8.3 Ground-Based Low PRFRadar 104
84 FLIR o e e e e e e 109
85 Ladar e e e 112
86 MMW Radar i i it et e e 115
8.7 SAR e e e e 118
9 Appendix B: Code for Chapter 4 I - - X 120
10 Appendix C: Code for Chapter 5 150

Chapter 1

Project Overview

In spite of a significant progress in research on information fusion, there is still a lack of a
formal theoretical framework for integrating disparate sources of information, and especially
for developing such systems. The consequence of this situation is that the designer of an
information fusion system does not have the necessary theoretical or computer-based tools
to analyze various design solutions with respect to a given system performance measure. In
particular, the designer cannot reason about the impact of uncertainty of information (e.g.,
signal to noise ratio (SNR) or imprecision of a definition of a concept) on the uncertainty of
the decisions derived by the system. For instance, the designer is interested in the answer to
the question of what is the accuracy of a given target recognition decision given particular
levels of uncertainty of information received by a number of sensors. Also, the designer could
use a computer aided software engineering (CASE) tool to support him or her in the process
of software development. While a number of CASE tools are available from various vendors,
they do not provide enough rigor to ensure that a system specification is correctly translated
into the design representation and then into a correct code implementation. The main
objective of this project is to develop a formal information fusion framework for analyzing
and developing information fusion systems. o
The characteristics of a formal approach include: :

1. The use of logic and mathematics to formulate knowledge of: requirement specifica-
tions of fusion systems (including performance measures); theories of the sensed world;
theories of sensors.

2. The use of this formal knowledge in the development of fusion systems.

3. The use of formal (provably correct) transformations in the process of development of
fusion systems,.

4. The use of formal method tools (theorem provers) in the development process.

To address the problems mentioned above within the formal method paradigm we set the
goal of this project as the development of a Formal Information Fusion Framework (FIFF)
within which such problems could be precisely defined and then addressed. More specifically,
our goal is to develop the following components for such a framework.

1. A basic language for representing theories necessary for analyzing and developing in-
formation fusion systems, including the basic vocabulary for fusion system elements,
system architecture, main functions, typical goals, and selected problem and world
representations.

2. A host of basic fusion theories related to fusion of information, e.g., theories for sensing,
theories for particular sensors, theories for data association, theories for refinement of
system requirements and propagation of performance measures, theories for combining
data into one coherent structure, and some theories of the physical world.

3. Basic procedures for specifying, designing, implementing informaiion fusion systems.
In particular, it should contain procedures for checking consistency of proposed solu-
tions with the selected theories of the world, procedures for checking completeness and
internal consistency of particular representations, procedures for refining representa-
tions that preserve specified performance criteria of the fusion system.

Our approach consists of three main components:

1. Formulation of the information fusion problem.
2. Selection of category theory as a theory for defining and analyzing fusion operators.

3. Selection of the Specware formal specification tool as our CASE tool.

To formalize the concept of information fusion we chose the discipline of model theory, a
sub-discipline of formal mathematical logic. We used model theory to formalize knowledge
about sensors, objects, the world, and any necessary background knowledge. Each of these
components of knowledge is represented by a collection of theories and classes of their models.
Theories are syntactical objects, while models provide the semantics for these objects. A
fusion operator takes a number of theories and their models and produces a fuised theory
and a class of its models. Therefore, in our approach, unlike in any othe: approach, fusion
is an operation on structures, rather than just on data. Operations ox data are obviously
performed by an information processing system, but the essence of fusion is captured in the
system specification and design stages. :

We stipulated that the fusion operator must be sound and correct. The soundness is
expressed as a requirement that the fused class of models be models of both the fused theory
and of the background knowledge. The correctness is expressed as a requirement that the
fused theory derive correct decisions (possibly generalized).

We use category theory as a unifying concept for formally developed information fusion sys-
tems. Category theory is a mathematically sound representation technique used to capture
the commonalities and relationships between objects; in our case these objects are struc-
tures - theories and models. This feature makes category theory a very elegant language for
describing information fusion systems and the information fusion process itself. It seems the
only theory that can capture the combination (fusion) of structures like models and theories.
Additionally, it provides the operator of colimit that allows us to combine such structures.

To investigate the formal approach to information fusion we selected the SpecwareFT™
specification tool (from Kestrel Institute). Specware is based on category theory. In Specware,

6

category theory objects are called specs (specifications). Specware supports the colimit op-
eration. It also supports progressive modular development of specifications. Additionally, it
supports the process of refinement - the process of progressive translation of specifications

into code.

The refinement process is guaranteed to be correct.

1.1 Summary of Results

During the time of this project we have accomplished the goals duscribed above. We have
already submitted a number of papers describing our results and still are in the process
of writing more papers that document our findings. In the papers we have also included
problems that we have identified in this research and which, we believe, should be undertaken
as future research topics.

Formalization of the Information Fusion Problem

Formalization of the information fusion problem was the main goal of this project. We
present our solution in Chapter 2. We believe that this formalization will constitute
a foundation for the theory of information fusion. We have identified some basic
vocabulary that constitutes the vocabulary of the theory of information fusion. We
formalized the vocabulary as theories in Specware, with information objects being sorts
with associated axioms, and relations/functions as operations with associated axioms.

‘Within our formal framework we were able to define such basic notions like data

fusion and decision fusion. These notions are widely used in the fusion literature,
however, nowhere else are they precisely defined.

In our framework we were able to define the notion of category of information
fusion systems. Within this category we formulated the notion of subclass, i.e.,
that a given fusion system is a subclass of another kind of fusion system.

The notion of subclass allowed us to consider relationshirs among classes of fusion
systems. In particular, we were able to prove that the class of decision fusion
systems is a subclass of data fusion systems.

We investigated the question of when decision fusion is equivalent to data fusion.
In particular, we formulated criteria that need to be satisfied for decision fusion
to be equivalent to data fusion. We gave sufficient and necessary conditions for
the equivalence.

Within our formal framework we were able to define some special classes of fusion
systems, e.g., monotonic, consistent, preferential. These classes are not explicitly
used in the fusion literature, but since they constitute special categories, their
specific properties may be used in the analysis of fusion systems.

An Ontology for Information Fusion

We have developed various specifications (in Slang, the language of Specware) that
can be used in the process of developing new fusion systems. These specifications
constitute an initial ontology for information fusion. While some of the specifications

7

were developed with the goal of investigating a particular research questions, and thus
are more of an experimental nature, some others capture main characteristics of a
practical nature. For instance, we have developed a number of theories for sensors.
The list of theories covers both real sensors, especially various kind of radars, e.g., the
Synthetic Aperture Radar, and some artificial sensors that we used for demonstration
of our ideas, like artificial 1D range and intensity sensors. This ontology could be
extended to become of practical size and value. The ontology is composed of two
major components: theories of geometry and theories of sensors. Additionally, the
ontology includes templates of goals.

A Procedure for the Development of Information Fusion Systems Based on Formal Methods

As specified in the goals of this project, we developed a procedure for developing
information fusion systems using formal methods. This procedure was partially imple-
mented and tested. The final result will is a demo that exemplifies advantages of using
the formal approach to designing information fusion systems.

To accomplish this goal we first developed a use case (in UML: the Unified Model-
ing Language) that describes the interaction of the actor (information fusion designer)
with the system (Formal Information Fusion Framework). The use case steps include
Goal Specification, Sensor Specification, and Specification Synthesis. Specification
Synthesis, in turn, includes Ontology Selection and Search, as well as Theorem Prov-
ing. Theorem Proving serves two purposes: consistency checking of the specification
being developed and proving that the specification, and consequently the system that
can be developed from the specification using formal methods, would have particular
properties. Our framework includes templates that are used to support these steps.

In addition to the use case, we tested these procedures on two examples in which
we developed specifications of target recognition systems, one for a simple scenario of
recognition of rectangles and triangles, and another one of a more realistic nature that
uses radars. Using these specifications we analyzed various design solutions and proved
their properties. The results of these experiments will appear as a Ph.D. thesis which
is expected to be complete by the end of this year. A demo is available at our project’s
web page.

Reasoning in the Design Phase

Since the most important application-oriented goal of this effort was to show that the
designer of an information fusion system can reason about the fusion system s/he is
designing before it actually is implemented, we devoted much of attention to the issue
of Measures of Effectiveness (MOE) and the propagation of the expected MOE through
the phases of the system development process. Our focus was on the MOEs that use
fuzzy measures and fuzzy reasoning.

We conducted the studies of fuzzy measures in two directions. One was the development
of a library of formal specifications for fuzzy logic. The second was the theoretical study
of the semantics for fuzzy variables.

We proposed to use fuzzy set theory (fuzzy numbers, and fuzzy operators) to charac-
terize the uncertainty of input information and then manipulate (reason about) the

8

uncertainty of decisions based upon the input information. A library of specifications
of fuzzy set theory was developed using category theory and Specware. The library
was then used to construct specifications of fuzzy information processing systems. As
an example, a fuzzy edge detection algorithm was specified in Specware. The algo-
rithm uses fuzzy operations in its processing. Then we formulated some theorems in
the language of Specware (Slang). As a next step we proved the theorems. Ideally,
the proofs should be automatic. However, due to some shortcomings of the current
theorem provers, we had to use a hybrid approach, i.e., the prover had to be guided
through the proof. The main use of the prover was to confirm the conjectures generated
by the human.

To achieve the second goal of this sub-effort, we conducted extensive literature studies
related to the semantics of fuzzy logic. This direction was initiated after we received
input from the Air Force indicating that the Air Force in particular, and the DoD in
general, may be reluctant to apply fuzzy logic due to the lack of the semantics of fuzzy
logic. The result of our literature search partially confirmed this claim. We found
many articles describing formalizations of various fuzzy logics. We concluded that
there exist good formalizations of fuzzy logic, i.e., formalizations of the fuzzy inference
rules. The second conclusion was that there is no formalization of the notion of fuzzy
variable. In all research and application articles authors assume that the meaning of
fuzzy variables is given, in most cases by an expert. In other words, authors accept
the fact that the meaning of fuzzy variables is subjective. As a result of this study,
we proposed an approach to the formalization of the semantics of fuzzy variables.
The main idea behind this approach is to use unsupervised learning. This topic was
identified as a topic for future research; a proposal has been submitted to the AFOSR.

Wavelet-Based Features

We continued our research on wavelet-based features. In this research, we showed a
step-by-step approach to designing an s:nsor fusion system for ATR using wavelet co-
efficients as features. First, we showed Low our former results can be incorporated into
our formal framework. Towards this aim we showed the mapping of our system to the
category theory objects, morphisms and refinements. One part of information required
for this approach is a collection of theories of targets. In our earlier research, both the
theories and the selection of features were done manually by the system designer. In
this research effort we investigated the possibility of generating both the target theories
and the features automatically, using a test database of target signatures. In particular,
we proposed an approach to ATR in which we use relations among wavelet coefficients
in the classification decision. The set of wavelet coefficients used for this purpose is not
fixed, it is selected during the classification. The classification decision is made based
upon the satisfaction of a relation by the wavelet coefficients. The relation is learned
by the system automatically based upon a pre-classified database of target signatures.
We implemented a simulation of such a system and compared its performance to a
system in which a fixed set of wavelet coefficients was selected using an entropy based
measure. The results of this comparison showed that the dynamically selected features
and the learned relations gave a much better classification accuracy than the fixed set

of features.

Decision Fusion

Although most of our research was focused on data fusion, we also investigated the issue
of decision fusion. In particular, we investigated the case of decision fusion when two
(or more) sensors and the fusion center have a common language to represent queries
and decisions, while each of the sensors has its own interpretation of the formulas of the
language. Fusion is achieved through the model-theoretic operation of direct product
of models. Since not all (most) formulas are not preserved under the product we need a
decision procedure to tell us how to combine decisions from particular sensors into one
fused decision. Towards this aim the notion of Galvin system was used. The validity
of the solution is formally defined and proved in an appropriate theorem. The main
advantages of the proposed approach are that the decision mechanism is generic, i.e.,
it can check the validity of any goal formula, and that it is provably correct.

10

Chapter 2

Fusion as an Operation on Formal
Systems

In this chapter we present a formalization of the notion of “information fusion” within the
framework of formal logic and category theory. Within this framework information fusion
systems can be specified in precise mathematical terms allowing in this way to formally reason
about such specifications, designs and implementations. The notion of fusion proposed
here differs from other approaches, where either data or decisions are fused. Here, the
structures that represent the meaning of information (theories and models) are fused, while
data are then simply processed using these structures (filtered through these structures).
Within this framework the requirement of consistency of representations is formally and
explicitly specified and then can be manipulated by the computer using automatic reasoning
techniques.

We believe that this formalization will constitute a foundation for the theory of information
fusion. We have identified some basic vocabulary that constitutes the vocabulary of the
theory of information fusion. We formalized the vocabulary as theories in Specware, with
information objects being sorts with associated axioms, and relations/functions as operations
with associated axioms. We provide precise formal definitions of such notions like data fusion
and decision fusion. These notions are widely used in the fusion literature, however, nowhere
else are they precisely defined. We also define the notion of category of information fusion
systems. Within this category we formulated the notion of subclass, i.e., that a given fusion
system is a subclass of another kind of fusion system. The notion of subclass was then used
to analyze relationships among classes of fusion systems. In particular, we prove that the
class of decision fusion systems is a subclass of data fusion systems. We also formulated
criteria that need to be satisfied for decision fusion to be equivalent to data fusion. We gave
sufficient and necessary conditions for the equivalence. We also define some special classes of
fusion systems, e.g., monotonic, consistent, preferential. These classes are not explicitly used
in the fusion literature, but since they constitute special categories, their specific properties
may be used in the analysis of fusion systems.

11

2.1 An Information Fusion System

An information fusion system (IFS) (see Figure 2.1) may receive inputs from various sources:
sensors, data bases, knowledge bases, and other systems (over communication lines). In
our discussion we will focus on inputs from sensors, since other sources of information can
be considered as special kinds of sensors. Sensors may include vision cameras, infrared
cameras, radars, accelerometers, ultrasound. Sensors provide measurements of a number of
interrelated variables (n-tuples). In mathematical sense, sensors output either functions or
relations. Sensor measuremeiits may be interpreted as containing some degree of randomness.
The sensors are controlled by the SDFS according to a SDFS goal. The goal is one of the
external inputs to the SDFS provided by the human, while controls are one kind of IFS
outputs. Typically, an IFS provides output screens that serve to communicate with the
human operator (human-in-the-loop).

Human
A
Solutions \ Goals/Queries
Knowledge .
Bascs System
Control
Information

Bases
AdFS)
Other

Sensor
Control

A

| Sensor 1 l | Sensor 2]
1

r Observed System]—————

Figure 2.1: Information Fusion System (IFS)

In general, the goal of a SDFS is to interpret data received through sensors. It is expressed
in a prespecified goal language understandable to either the user or another system. For
instance, the goal can be to reconstruct the 3-D scene. In such a case the goal language
includes a set of quadruples, where each element of the set represents the XYZ-coordinates
of the world and the value of the light intensity at that point. In a tracking application, on
the other hand, the goal is to find the state vector of the tracked object, and therefore the
goal language includes six-tuples representing X, Y, and Z positions, as well as their first
derivatives (velocities). If the goal is object recognition, then the goal language describes types
of objects. In a situation assessment scenario, the language can be much more complex,

12

and include descriptions of possible courses of events, consequences of particular actions,
configurations of objects, features associated with objects and configurations, behaviors, etc.
In the sensor fusion literature the goal language is often called world model.

A natural requirement for an information fusion system is that the interpretation of the
data be “correct”. Intuitively, this means that the objects identified by the IFS really exist
in the world, that these objects have the features as identified by the IFS, that the relations
recognized by the IFS really exist in the world, and that the interpretation does not violate
t}e constraints that the world is known to obey, e.g., the laws of physics. In order to maintain
the truthfulness of the interpretation, the system (agent) must maintain consistency of its
representation.

To deal with the issue of correctness of interpretations we use the framework of model the-
ory [6). In particular, we make use of formal languages to describe the world and the sensing
process and models to represent sensor data, operations on data, and relations among the
data. Models consist of carriers of different sorts (usually sets) and many-sorted operations,
and relations among the elements of different carriers. We use theories to represent symbolic
knowledge about the world and about the sensors.

Fusion is then treated as a goal-driven operation of combining a fixed number of languages,

theories and classes of models related to the goal, the sensors and the background knowledge,
into one combined language, one combined theory and one combined class of models of the
world. For languages, the combination involves extending the language so that it includes
the well-formed forms (terms and formulas) related to the goal, sensors and background
theories. For the fusion of theories, this usually involves combining the theorems of the
theories, although one can also think of combining rules of inference. Fusion of classes of
models is strictly related to fusion of theories (in general, it is a dual operation). Particular
models can be fused by combining carriers, operations, and relations of the models into new
carriers, operations and relations of the fused model. Therefore, fusion is a formal system
operator that has multiple languages, theories and classes of models for inputs and a single
lasiguage, a theory, and a class of models as the output.
* The justification for fusion comes from the fact that the fusion system performs better, in
relation to a prespecified performance measure, than any subsystem involving only one sen-
sor. This may be either an added capability of answering queries about the world that cannot
be answered using only one sensor, or increased precision of the answer, or an improvement
of any other prespecified measure.

This understanding of fusion differs from more traditional approaches [13, 27], where issues
like consistency are not dealt with explicitly. Rather, there is an underlying presumption
that the operations of fusion are implemented in a consistent way by the human. In our
approach, on the other hand, a framework is provided in which the requirement of consistency
of representations can be formally and explicitly specified and then can be manipulated by
the computer using automatic reasoning techniques.

Our approach is strongly motivated by software engineering, because an information fusion
system is essentially a program. From the software engineering point of view, there exists
a need for formal frameworks, in which systems can be represented, checked, and verified.
Formal approaches provide more credibility for the system structure, and more predictability
of its dynamical behavior. The use of formal methods brings more rigor to the development
of complex computer systems[41]. Our goal is to develop formal specification methods ori-

13

ented specifically towards sensor data fusion. Although specialized architectures have been
proposed, for instance [38, 29], approaches to formal specifications of IFS systems, to our
best knowledge, are not known in the literature.

From the programming languages point of view we treat our IFS system as a network of
objects (in the object oriented paradigm) communicating via messages. Each object is an
instance of a class. The goal for fusion is then to find classes from which, through class
construction and instantiation, a whole SDF system can be built.

The main goal of our research in sensor data fusion (SDF) is to develop a systematic
approach (a formal methodology) to specifying, designing, and implementing software sys-
tems for interpreting sensory information and for reasoning about the situation based upon
this information and upon available data bases and knowledge bases. Towards this aim, we
pursue several subgoals: (1) Development of a theory of sensor/data fusion. This includes
formalization of the main concepts of the sensor data fusion theory in terms of theories and
classes of models. (2) Development of a framework for specifying, designing, implementing
and testing sensor/data fusion software systems. The basic tools utilized in this approach
are computer-aided software engineering (CASE) tools and automatic theorem provers. (3)
Development of algorithms for sensor data fusion. (4) Testing sensor data fusion approaches
on real tasks and real data. ‘ '

Here we deal primarily with the first of the issues mentioned above — the theory of sensor
data fusion. Although there are several definitions of “fusion” in the subject literature, there
does not seem to be an agreement on what is and what is not fusion. Our main objective
is to contribute to the understanding of this notion. This understanding is necessary for
specifying, designing and implementing information fusion systems.

2.2 First-level Decomposition of the IFS

In this presentation we follow a top-down approach by progressively decomposing the prob-
lem of development of an IFS into simpler sub-prcolems. In the first cut we decompose
the IFS into three subsystems — Specification Syntt.sis, Code Generation (Refinement) and
Information Processing — as shown in Figure 2.2. This decomposition follows the formal
approach to software development, where code is developed in the process of progressive
refinement of a formal software specification. The third block in Figure 2.2 represents the
actual running system that takes inputs from all the sources and produces outputs in real
time. Although it would be desirable to have the first two blocks also working in real time,
it does not seem to be feasible at this time. Rather both Specification Synthesis and Code
Generation are performed off-line. These two blocks, nevertheless, are shown as part of an
IFS, since the main fusion problem, as presented here, is solved in the first block, i.e., in
Specification Synthesis. This is essentially the only block where expertise of sensors and
scenaria is needed. Code Generation can be performed independently of such expertise.

14

H U M A N

T 11

Speciﬁcations Code i

. ISpec Information

SymheS]S ”| Generation COdC Processing

Specs/Algorithms/Design IFS S]
Obs.Syst

Figure 2.2: Information Fusion System: First-level Decomposition

2.3 Formalization of Information Fusion

2.3.1 Introduction

In spite of a significant progress in research on information fusion, there is still a lack of
a formal theoretical framework for integrating disparate sources of information, and espe -
cially for developing such systems. The consequence of this situation is that the designe:
of an information fusion system does not have the necessary tools to analyze various design
solutions with respect to a given system performance measure. In particular, the designer
cannot reason about the impact of uncertainty of information (e.g., signal to noise ratio
(SNR) or imprecision of a definition of a concept) on the uncertainty of the decisions derived
by the system. For instance, the designer is interested in the answer to the question of what
is the accuracy of a given target recognition decision given particular levels of uncertainty
of information received by a number of sensors. Also, the designer could use a computer
aided software engineering (CASE) tool to support him or her in the process of software
development. While a number of CASE tools are available from various vendors, they do
not provide enough rigor to ensure that a system specification is correctly translated into
the design representation and then into a correct code implementation.

The main objective of our research is to develop a formal information fusion framework
for analyzing and developing information fusion systems. The characteristics of a formal
approach include:

1. The use of logic and mathematics to formulate knowledge of:

15

(a) requirement specifications of fusion systems (including performance measures)
(b) theories of the sensed world

(c) theories of sensors

2. The use of this formal knowledge in the development of fusion systems

3. The use of formal (provably correct) transformations in the process of development of

fusion systems

4. The use of formal method tools (theorem provers) in the development process.
More specifically, our goal is to develop the following components for such a framework.

1. A basic language for representing theories necessary for analyzing and developing in-

formation fusion systems, including the basic vocabulary for fusion system elements,
system architecture, main functions, typical goals, and selected problem and world
representations.

. A host of basic fusion theories related to fusion of information, e.g., theories for sensing,

theories for particular sensors, theories for data association, theories for refinement of
system requirements and propagation of performance measures, theories for combining
data into one coherent structure, and some theories of the physical world.

. Basic procedures for specifying, designing, implementing information fusion systems.

In particular, it should contain procedures for checking consistency of proposed solu-
tions with the selected theories of the world, procedures for checking completeness and
internal consistency of particular representations, procedures for refining representa-
tions that preserve specified performance criteria of the fusion system.

Our approach consists of three main components:

1. Formulation of the information fusion problem
2. Selection of category theory as a theory for defining and analyzing fusion operators

3. Selection of the Specware formal specification tool as our CASE tool.

To formalize the concept of information fusion we chose the discipline of model theory, a
sub-discipline of formal mathematical logic. We use model theory to formalize knowledge
about sensors, objects, the world, and any necessary background knowledge. Each of these
components of knowledge is represented by a collection of theories and classes of their mod-
els. Theories are syntactical objects, while models provide the semantics for these objects.
A fusion operator takes a number of theories and their models and produces a fused theory
and a class of its models. Therefore, in our approach, unlike in any other approach, fusion
is an operation on structures, rather than just on data. Operations on data are obviously
performed by an information processing system, but the essence of fusion is captured in
the system specification and design stages. We stipulated that the fusion operator must

16

be sound and correct. The soundness is expressed as a requirement that the fused class of
models be models of both the fused theory and of the background knowledge. The correct-
ness is expressed as a requirement that the fused theory derive correct decisions (possibly
generalized).

We are using category theory as a unifying concept for formally developed information
fusion systems. Category theory is a mathematically sound representation technique used
to capture the commonalities and relationships between objects; in our case these objects
are structures - theories and models. This feature makes category theory a very elegant
language for describing information fusion systems and the information fusion process itself.
It seems the only theory that can capture the combination (fusion) of structures like models
and theories. Additionally, it provides the operator of colimit that allows us to combine such
structures.

To investigate the formal approach to information fusion we selected the Specware specifi-
cation tool (Kestrel Institute). Specware is based on category theory. In Specware, category
theory objects are called specs (specifications). Specware supports the colimit operation. It
also supports progressive modular development of specifications. Additionally, it supports
the process of refinement - the process of progressive translation of specifications into code.
The refinement process is guaranteed to be correct. .

We have conducted both theoretical and practical investigations. As a first step we focused
on the formulation of the fusion problem in terms of category theory. This formulation is
the subject of this paper.

2.4 The Fusion Problem

We formalize the information fusion problem in terms of triples (X,7, M), where ¥ are
signatures (languages), T - theories over the signatures, and M - classes of models of the
theories. Signatures have the following form: ¥ = (o, F)), where o are sorts and F are
functions over the sorts. Theories are associated with the signatu: ¢s; they are collections
of axioms over the signatures. Signatures and associated theoriec are called specifications,
or for short specs, S = (£, T). Specs are considered as objects in the category Sign related
through morphisms. Specs and morphisms are represented as diagrams. Models are ... We
always assume that our theories are consistent, i.e., that they have models, formally denoted
asMET.
We distinguish two kinds of information fusion — data fusion and decision fusion.

2.4.1 Data Fusion

The goal of data fusion is to develop a spec Sy and a fused class of models { M r}, as described
below. The inputs to this fusion process are some or all of the following specifications:

Sy =(X,E,A: X - E),Ty)
S = ((X17V1,f1 Xy — Vl)aTl)
Sy = (X, Va, fo: Xo = Vo), T3)

17

S, = (C = {C1,Cs,...}) - a spec of distinguished sorts (coordinate sorts)

Sy
/T N
Sl Sw 52
N T/
Se

Figure 2.3: Data Fusion

The goal of information fusion is to find the following diagram D - a diagram of relations
among the specs, where S; is a specification:

S; = (X,E,A : X - E,X;,), X0, Vo, i 1 X1 — Vi,fao : Xo = Vo,Df 1 (X7 —
W), (X2 — Vo) = (X — 2F)), Ty)

satisfying the conditions:
.}\/ff, s.t. Mf }= Tf
Tf [Vrex A(.’L‘) € Df(fl, fg)(.’r)

2.4.2 Discussion

In the above formulation of the fusion problem we assume that S,, specifies the world that
both sensors observe. In this specification, X represents the world coordinates, £ is the
objects in the world; they “occupy” locations in the world. The function A assigns these
objects to particular locations. We do not assume that we know this function, but we assume
that we may have access to particular instances of this function. We use this capability for
testing the resulting fusion system. Additionally, the specification of the world can contain
theories T, that capture known dependencies and constraints that the world is known to
obey.

Implicit in this formulation is the fact that the goal of the fusion system is to recognize
objects in the world, or more precisely, assign object names to all locations in the world. For
other goals, the fusion problem could have a different signature, but the idea should remain
the same.

The specifications S;, S, represent specifications of two sensors. Each sensor has its own
coordinates (X, is the coordinate of the sensor specified by S; and X, is the coordinate of
the sensor specified by S,). Each sensor has its own sort of values (V; and V3). The sensors
have their measurement functions (fi, fa). Moreover, T; and T; specify theories of sensor
operation.

S, is a collection of simple specs, specifications of coordinate sorts. The purpose of identi-
fying these specs is to show the relationships between the world coordinates and the sensor
coordinates. They unify sorts that represent the same coordinates. For the example of range
and intensity sensors we assume that X = X, X X, and we want to associate X, with X,
X; with X, and V; with X,.

18

The specification Sy is obtained in two steps. First, a colimit of S, Sy, S, and S,, is taken.
At this point some of the sorts, as explained above, are identified (or “glued” together).
This means that some of the sorts listed in the spec Sy would actually be glued and thus
that spec would not have as many sorts as shown. For instance, in the case of a range and
intensity sensor, three sorts would form an equivalence class {Xz, X;, Xi}, and so would
{X,,V;}. We left the original sorts names in the specs for the sake of comprehensibility.
In the second step the resulting specification is extended by adding the function Dy. Its
signature is constructed out of the signatures of the two sensors and of the world. This
function takes two measurement functions fi.f, as inputs and returns a decision function
that assigns subsets of objects to the world coordinates.

Ideally, the theory Ty of Sy should include the following axiom:

T+ Veex Di(f1, f2)(z) = Az),

which states that the resulting decision function Dy is compatible with the world (specified
through function A). Such a strong requirement would be very difficult to achieve in practice.
This would mean that the fusion system can always find a unique solution and that the ‘
decision would always be correct (full agreement with the world). For this reason, we decided
not to include this axiom here, but instead, provide a somewhat weaker requirement in the
specification Sy.

2.5 Decision Fusion

The solution we have described so far is termed in the literature (cf. {8]) data fusion. Another
scheme is known as decision fusion. In our framework decision fusion is expressed by the
diagram of Figure 2.4.

Sq
/N
Sa Sa2
T N S0
S Sy So
N T/
Se

Figure 2.4: Decision Fusion

Here Sy1, Sq4e represent the following specs:
S =((X1,Vi,A: X > E, fi : X, = Vi, D1 : (X1 = V1) = (X — 2F)), T)
Sa2 = ((Xz, Vo,A: X = E, fo: X5 =V, Dy (Xz - V2) - (X - 2E)),Td2)

The functions Dy, D, are the decision functions for each sensor. They could have been
used for making decisions when only one of the sensors is present. In the process of decision
fusion these two functions are used instead of raw data. The spec S, represents the decision
fusion block.

19

Sd= ((Xl,‘/l,Xg,‘/Q,Aix - E,f1 ZX} — %,Dl : (X1—+ ‘/1) — (X——>2E),f22X —

Va, Dy i (Xo — Vi) = (X = 2F), Dy : (X — 28),(X — 2F) = (X — 2F)), Tu)

Note that in this spec Dy takes the assignments that are the results of application of
functions D; and D, and combines these two assignments into one (fused) assignment.

2.6 Results

In this paper we use our formal framework to show the following:

1.
2.

Define the relation subclass between two fusion systems.
Prove that the class of decision fusion systems is a subclass of data fusion systems.

We investigate the issue of when decision fusion is equivalent to data fusion.

(a) We formulate criteria that need to be satisfied for decision fusion to be equivalent
to data fusion.

(b) We give necessary and sufficient conditions for the equivalence.

(c) We show examples of equivalent fusion systems.

We provide examples of special classes of fusion systems, e.g., monotonic, consistent,
preferential and we show that some examples from [8] can be expressed in our frame-
work. For instance, we analyze the example of AND fusion, i.e., when Dg(Dy, Do)(z) =
Dl(.’L‘) N DQ(JI)

We also discuss how the problem of data association is expressed in our framework.
This problem is considered to be at the center stage of information fusion.

2.6.1 The “subclass” Relation

In order to be able to compare various fusion systems we introduce the relation of subclass,
which is a relation between fusion systems.

Definition 2.6.1 Let Sl and 5’2 be two data fusion systems like in Figure 2.4, where all
nodes except S} and 52 are ihe same. We say that S} is a subclass of S} if there is a
morphism of speczﬁcatzons T Sf — Sf, where Sf isa deﬁmtzonal extension of Sf, such that
the diagrams shown in Figure 2.5 commute.

S« 28— 25— 8
NI SN NoT
S Sy Su

Figure 2.5: Commutativity Requirements for Subclass Relations

20

Definition 2.6.2 Two data fusion systems, S} and S? are equivalent if both S} s a subclass
of S? and S} is a subclass of S}.

For given S, S1, Sz and S, the data fusion systems form a category, where the morphisms
from S7 to S} are the morphisms of specifications that make S} a subclass of S7.

2.6.2 Decision Fusion as a Subclass of Data Fusion

We assume that both iii the case of data fusion and decision fusion the ultimate goal of the
system is to make decision, i.e., the goal is to develop a decision function that mimics the
world’s decision function A : X — FE. In the case of decision fusion, the decision process
is decomposed into two steps. First we associate a decision function D; with each of the
sensors, i, and then, in the second step, the decisions (i.e., the results of the application of
individual decision functions D;) are input to the second (fused) decision function Dy. In
the case of data fusion, as shown in Figure 2.3, there is only one decision function which
operates on sensory data, rather than on decisions based upon data from individual sensors.

The idea that decision fusion is a special case of data fusion is captured by the following
theorem.

Theorem 2.6.3 The class of decision function systems, as specified in Figure 2.4, is a
subclass of data fusion systems, as specified in Figure 2.3.

Proof:

Assume we have a decision fusion diagram as in Figure 2.4. We need to produce a data
fusion diagram as in Figure 2.3 such that there is a morphism from the diagram of Figure
2.3 to the diagram of Figure 2.4. As a first step we define Sy as a definitional extension Sq
of S; by defining a new function Dy : (X; — Vi, X — Va) — 2F where

Df = DdO (D1 X DQ)
This relation is expreczed by the diagram as in Figure 2.6. Let’s recall that the definitional
extension Sy is equipped with an embedding S; — S; which is the identity on all sorts,

operations and axioms from Sy.
We define the arrows from S; — Sy (i = 1,2) as a composition

Si—*SfESi—*Sdi—‘)Sd——);gd

We define the arrow S,, — Sy as a composition

Sw'_)SfESw_’Sdi'—)Sd_’Sd

It is clear that the new diagram we constructed is a data fusion diagram as in Figure 2.3.
Now the identity morphism Sy = S, — Sy makes Sy a subclass of S; according to Definition
2.6.1. Therefore the class of decision fusion systems is a subclass of data fusion systems.
This concludes the proof.

1
The fact that the class of decision fusion systems is a subclass of data fusion systems can

be represented by the diagram of Figure 2.7.

21

(X, =W)X = V) D57 (X = 25)(X —28)
\, D /" Da
(X — 2F)

Figure 2.6: Composition

Sq
S0
Sa1 Sy Sa2
[B N
Sy Sw Sy

N T/
Se

Figure 2.7: Decision Fusion is a Subclass of Data Fusion

2.6.3 When is decision fusion equivailent to data fusion?

We have already proved that decision fusion is a subclass of data fusion. Now we investigate
the class of data fusion systems that are subclass of decision fusion systems. According to
Definition 2.6.2, such a subclass would be equivalent to decision fusion systems.

Note that in our framework, the equivalence of decision and data fusion is expressed by
the diagram of Figure 2.8. This diagram says that the data fusion function Dy is of the form
Dj = Dgo (Dy x Dy). Therefore we have the following necessary condition. '

Vf1.f2vgl,g2f17gl : Xl - ‘/17f2792 : X2 - ‘/QDZ(fl) = D‘i(gi)fori = 1,2 = Df(fl7f2) = Df(gth)
(2.1)

This condition turns out *o be sufficient.

Theorem 2.6.4 A data fusion system S; is a subclass of a decision fusion system if and
only if the condition of Eq. (2.1) is satisfied.

Proof:

We need to define a decision fusion system S; and a morphism g : Sy — S for a definitional
extension S; of S;. We define Sy to be a definitional extension Sy, where we extend the
specification S; by adding a function Dy : (X — 2E) (X — 2F) = (X — 2B), (X — 2F),
where we set

| Dg(f1, f2), if there exists f;, s.t., Di(fi) = w;
Da(ur, up) = { 0 otherwise

We can take p as the identity morphism.

22

AR TN
S Sy Sz
T/ 1N
Sl Sw S?

N TS

Se

Figure 2.8: Equivalence Decision and Data Fusion

2.7 Classification of Fusion Problems

In this section we analyze special kinds of information fusion which occurs when we add

some natural axioms.
These axioms have to relate the the set D;(f1, f2) to the sets Dy(f1) and Da(f2).
Two most important types of fused systems we consider are

1. The Consistent Systems

Dy (f1, f2) € Di(f1) N Da(f2)

The consistency of the system allows to show that the fused system is more effective
than the sensors used separately. It occurs in a lot of real life applications.

. The Monotonic Systems

Dy(f1, f2) D D1(f1) N Da(f2).

The monotonicity assures that the fused system does not contradict its parts when
they are in agreement. We cannot make the general claims about the effectiveness of
such systems. In fact this property is considered for theoretical purposes.

. The Preferential Systems.

Dy(f1, f2) € Di(fr)-

The preferential systems first take into account the reading of the sensor S; and only
in the case of ambiguity look at the reading of Ss. '

. The Alternative Systems.

Dy(f1, f2) € D1(f1) U Da(f2)

The alternative system assures that if the sensors agree then the fused system renders
the same decision as both of them, so it is at least as reliable as the least reliable sensor
in the system.

23

The most important class of fused systems is the class of consistent ones. Before we
formulate the relevant theorem let us discuss the effectiveness of the system. We use the
probabilistic approach, but also the fuzzy logic approach would be possible.

For the sensors S;, S» and a fused system S one might extend the specifications 51, Sg, S
by the measures y; on the sets X; x E and the measure p on X X E. These sets of measures
must be compatible with the diagram defining S, i.e. for a map X — X; the measure p has
to be the pull-back of the measure y;.

In such situation we can define two subsets of X x E.

I'={(z,A(x)) |z € X}
Dy = {(z, Ds(f1, fo)(z)) | z € X}.
The effectiveness of of the fused system would be measured by the ratio

u(I' N Dy)
#(Dy)

By definition the effectiveness would be a number between 0 and 1 which equals 1 when
A(z) = Dy(fi1, f2)(z) outside of some set of measure zero.

E(S) =

Theorem 2.7.1 Let S be a consistent data fusion system, and let us assume that the aziom
(2?) is satisfied. Then the fused system is at least as effective as any of its parts.

Proof. ,
This just follows from the fact that Ds(fi, f2)(z) C D;i(fi)(z) for @ = 1,2. This implies
that u(D;(f1, f2)(z)) < pu(Di(fi)(z)) and, since the numerator of the effectiveness formula
is the same for both systems, the conclusion follows.

Remark. Notice that the effectiveness of the consistent system increases with the set
Di(f1)(z) N Dy(f2)(z) becoming smaller. This means with additional assumption on inde-
pendence of the conditions imposed by the sensws Si, S we will get better effectiveness
estimates.

2.7.1 Examples.

In this section we show that some of the fusion setups used in Dasarathy’s book [8] fit into
our scheme. Let us recall that in [8] the author analyzes several scenarios of fusion systems.
These scenarios are not based on the specifications of the sensor output, but on general
probabilistic approach. There are two kinds of assumptions.

In the first group of cases the author assumes that each sensor S; renders a decision about
the outcome, with the probability p; of rendering the right decision and probability g; of
getting the wrong decision, with p; + ¢; = 1. The author then estimates the probability of
the fused system of getting the right decision for different fusion setups.

These types of setups can be incorporated into our setup as follows. We take the set E
to be the set {0, 1} with two elements. The element 0 will mean that the system makes the
right decision, the element 1 means the system makes the wrong decision.

24

In the second group of cases the author assumes that each sensor S; renders a decision
about the outcome, with the probability p; of rendering the right decision and probability
¢; of getting the wrong decision, and with the probability r; of getting a non-decision, with
p; + ¢; + 7 = 1. The author then estimates the probability of the fused system of getting
the right decision for different fusion setups.

These types of setups can be incorporated into our framework as follows. We take the
set E to be the set {0,1,0} with three elements. The element 0 will mean that the system
makes the right decision, the element 1 means the system makes the wrong decision, and
the element () means there is no decision.

The coordinate sorts X; and X are just trivial, i.e. consist of one point.

This setup allows then to perform the analysis of the chapters 2 and 3 of [8]. The setups
with parallel sensor suits from chapter 2 correspond to the consistent and monotonic systems,
the setups for the serial sensor suites correspond to preferential sensor systems. Thus we can
conclude that the situations discussed in [8] are contained in our framework.

Also a very interesting effectiveness analysis from [8] fits into the effectiveness analysis
performed above. Since the set X is a one point set, we just need to define the measure on
E. In both cases, assigning probabilities p;, ¢; (resp. pi, ¢, ;) does exactly that.

2.8 Data Association

The first step in solving the above formulated problem is to perform association, as indicated
by the diagram in Figure 2.9. This diagram, similarly as all previous diagrams, shows how
to unify the distinguished sorts. It also shows how to unify other sorts and operations.
However, we still need to associate values of particular sorts. To achieve this goal, we add an
additional specification Sy, which is a definitional extension of Sy. The association is done
through change of coordinates: '

T — 1 = 1,(2) (2.2)

T — T3 = 11(7) (2.3)

The specification S;, contains four additional functions, z; and x5, as described in the above
equation, and additionally f; and f;, defined by the following equations:

filz) = fi(=) (2.4)
fa(x) = fa(z3) (2.5)

For the example of range and intensity sensors we assume that X = X, x X, and we want
to associate X, with X,, X; with X, and V, with X,,. We achieve this by creating a new spec
Sy, in which we add new functions z1, z,, f; and f] where f/, f; have the same signatures as
fr, fr, respectively. For instance,

{L‘l =Tr—a (26)

$2=I—b - (27)

25

/
N

AN
Ss

/

S

Figure 2.9: Association in Data Fusion

fi(@) = fr(z1) (2.8)
fity) = fr(y1) (29

Thus the formalism of specifications provides a natural framework for data association.

2.9 Syntactic vs. Semantic Fusion

In this section we consider the main fusion block, i.e., the Specification Synthesis block. By
specifications we mean signatures (languages), theories over the signatures, and classes of
models of the theories. We show the first decomposition of the Specification Synthesis block
in Figure 2.10. 4

In some cases we might be given specific models M;, M;, instead of classes of models.
Depending on which of the above are available, and depending on some other preferences,
the process of developing the fused theory and class of models may be arranged on many
different ways. For instance, we might first develop a fused theory Ty, and then find a class
of models associated with this theory.

One way to achieve the fusion goal is to split the inputs to the Sp~cification Synthesis
block (Figure 2.10) between the two tasks, so that purely semantic ir{urmation (theories)
are input into the Theory Construction task and the semantic inputs (models) are input into
the Model Construction task. We denote the semantic task by Vr, and the semantic task
by v M-

To be consistent with the formulation of the fusion problem in Section ??, the diagram
represented in Figure 2.11 must commute. This can be described by the following relations.

M i= VT(TG,CEG{Z},TIJ)
M =V (Mg, Mi, M, M)
MG }=TG1Mi |:717MJ ":71]'7Mb #Tb

2.9.1 Syntactic Theory Construction

The Theory Construction task can be considered as a goal-driven process that starts with
the goal theory Ti. This theory contains a goal sentence G. The intent is to prove that

26

Goal
Theory
T, Tj’ T, Construction Spec
Model
M}, (M}, (M
{_i{_l}{__b. Construction

Figure 2.10: Specification Synthesis

T,T.TT, T

(MGl AM).{M).1M,) ™

Yy

Figure 2.11: Syntactic and Semantic Levels of Specification Synthesis

27

the goal is true. This theory has to be combined with (extended by) other theories in order
to make such a proof possible. It is natural to use the theories of the sensors in the first
place. If the goal still cannot be proved, other background theories Ty need to be added.
Various standard mathematical theories are added also in this step. The signatures of the
goal theory and of the sensor theories, as well as some non-logical symbols appearing in these
theories, can be used in the search for theories to add. As a result, we obtain a sufficiently
rich theory T (specification) in which all sorts and operations from the goal theory T should
be definable. In other words, the transition from the goal and sensor theories to the fused
theory T can be achieved by appropriate definitional extensions of these theories using the
background theories Tj.

2.9.2 Semantic Model Construction

In the Model Construction task we need to combine structures (classes of models of the
particular theories fused in the syntactic task) into one class of structures. Since as a net
result, this operation should produce such a class of structures {M} that each one of them
is a model of the fused theory T, the semantic model construction operation V,; must be
so chosen that this property holds.

2.10 The Fusion Operator

In Section 2.9 we presented fusion as consisting of two operators, Vr and V. What
can these operators be? In this section we propose a category theory based approach to this
problem, similar to the one taken in the Specware approach [1]. In this approach theories are
represented as specifications. They are objects in the Small Categories (Cat). Relationships
among them are morphisms. Composition of theories is done using the colimit operation.
Models of the theories are objects of another category (Mod).

According to this paradigm, Figure 2.11 can be represented as in Figure 2.12. In this
diagram, corners of the diagram represent objects (or collection of objects). The arrows
represent morphisms. The operators became: \

VT(TG, ﬂv 7}, Tb) = COZ(TG7 Ti, :Tjja Tb)

VT({MG}’ {Mi}’ {MJ'}’ {Mb)} = Lim({MG}? {Mi}’ {Mj}v {Mb)}

where Col represents the colimit operator and Lim represents the limit operator. Note
that, since Lim and Col are two contravariant operators, the morphism arrows point in
opposite directions.

According to this diagram, fusion is accomplished by two operators: colimit and limit.
The colimit operation combines (glues) two theories (specifications) along the common part.
It is a shared union of two theories. In other words, first, common parts are identified in the
languages associated with particular theories, then these common parts are renamed so that
they have the same symbols in both theories, then the renaming is reflected in the axioms
of the theories, and finally, the theories are put together into one structure (one theory).

Note also that the arrows from theories to models are of a different kind - they are functors
that map objects of one category into the objects of another category.

28

Col

v

T,T.TT, T

Mod Mod

(Mgl IMLM M) M)

Lim

Figure 2.12: Syntactic and Semantic Levels of Specification Synthesis: Category Theory
Approach ‘

2.11 Example

2.11.1 Scenario

One of the typical sensor configurations for sensor data fusion is one vision sensor and one
range sensor. The vision sensor provides values of (reflected) light intensity for particular
sensor coordinates (X —Y'), while the range sensor provides values of distance from the sensor
to the to particular points in the scene represented by the X —Y coordinates. For the sake of
simplicity of the presentation we discuss, instead, a simpler and idealized scenario in which
we consider only one-dimensional sensor coordinates and ideal (no noise) measurements.
One-dimensional sensors, like a line scanning camera and a line scanning range sensor, exist,
although as all sensors, they are susceptible to noise, and their measurements are never
perfect. We believe that this example is appropriate for the introduction of some of the
fusion problems and for discussing solutions to these problems. A model for dealing with
noise can be added to this model in a modula- iashion.

In this section we describe only some of th- components of the scenario. The details will
be presented in later sections, after we introduce all the necessary formal concepts.

In our example (see Figure 2.13) we consider a world which is a two dimensional plane
whose points are parameterized by two coordinates: z (the ground) and y (the distance from
the ground). In this world two kinds of objects are possible: rectangles and triangles (with
one right angle). Their sizes vary, but they are relatively small with respect to the size of
the world. For simplicity, we assume that one and only one object at a time can be in this
world. The world can be empty. Additionally, we presume that objects are stationary, i.e.,
their position in terms of z and y remains constant in time, and that they are always located
between the lines z (y = 0) and | = 1. The objects are illuminated with parallel light; the
light direction is denoted by the angle a, as indicated in the figure. The world is measured
through two sensors: a one-dimensional vision sensor, and a one dimensional range sensor.
Both sensors make one sweep along line [, as shown in the figure. The vision sensor gives
information about the position of each (visible) point of the object with respect to x (the
ground) and of the shadow of the object on the ground. The range sensor gives the distance
of each (visible) point of the object from line . Examples of signals from both sensors are

29

Figure 2.13: A scenario for sensor data fusion

30

given at the bottom of Figure 2.13.

The goal for the system is to determine whether there is an object in the world and if
so, whether it is a rectangle or a triangle with one right angle. Thus the goal is object
recognition. Note that in this scenario the range sensor gives more information about the
objects than the vision sensor. The range sensor gives not only the location of the object,
but also the angles of its sides and the distance from the ground. In some cases the range
sensor is sufficient for the classification of an object into one of the three classes. E.g., when
an acute angle is at the sonsor side, the range sensor gives enough information to classify
the object as either a right triangle or as an illegal object. Nevertheless, in some other cases,
the information provided by the range sensor is not sufficient to make such a distinction.
Yet in some of these cases a less informative vision sensor can come to the rescue. The
advantage of the vision sensor stems from its ability to see shadows. In some configurations
(sizes of an object and its rotational location), the size of the shadow and its location can
provide the extra information that can be used to decide if the object is a triangle or a
rectangle. For instance, as shown in Figure 2.13, for both a triangle ABC and a rectangle
ABCD the range sensor signal is the same. But the intensity signals are different; for the
rectangle the intensity sensor will report shadow for B'D’, while for the triangle the shadow
will be on B’C’. In some other cases, even two sensors do not provide enough information
for distinguishing rectangles from triangles.

This example is intended to clearly show how two sensors can provide complementary
information about the world and how this information can be utilized by a sensor fusion
system. So far we sketched the way this kind of information is fused. To understand this ex-
ample the reader has to possess some knowledge of geometry and physics. We cannot expect ‘
that a computer has this kind of capabilities. Our goal is to understand the mechanisms
involved in the above example, formalize these mechanisms, and then implement them in
computer. Throughout the rest of this paper we will be using this example to explain all
the concepts being introduced.

2.11.2 Formalization of Initial Knowledge

In the following we list the theories involved in the recognition process, show examples
of the theories, and describe how they are fused. A complete presentation would include
the description of appropriate classes of models. We implemented these theories in the
specification language Slang, used by Specware [1], a formal method tool. For readability,
however, the theories are presented here using common mathematical notation.

Theory 7, : Range Sensor. The theory of the range sensor, 7;, consists of the following
two axioms:

L fi(z)=yAy<1l= O.(z,y)
2. fr(l') =yAy=1= ‘lO,—(I,y)

where 1 is a constant symbol, f, is a symbol denoting a one-placed function (sensor
measurement function), O, is a symbol denoting a two-placed relation (detection).

31

Theory 7; : Intensity Sensor. The theory 7; contains the knowledge about the intensity
sensor. It consists of the following single axiom:

f,(l‘) = lghg = S(x)

where igng - is a constant symbol, f; is a symbol denoting a one-placed (measurement)
function, S is a symbol denoting a one-placed relation (detection of shadow). We have
selected a very simple theory of the intensity sensor, since in this example, we use this sensor
solely to identify shadows. We extract other relevant information from the range sensor.

Theory 7,; : Rectangles and Right Triangles

The theory of rectangles and right triangles contains knowledge that allows us to distin-
guish rectangles from right triangles. It includes the following predicates: segment, constant,
length, projection, angle, Tight-angle, acute-angle, triangle, rectangle. This knowledge is a
subset of geometry, and thus is specific to any sensor or to a specific scenario. The axioms
of this theory are:

L SEG(xla Y1, T2, y2) « TlSISmO(za y) Ny = L.z + Y1 /\V-TzSISIlﬁO(x’ y)

Tr2—x1

2. CON(z1,y1,T2,Y2) « SEG(z1,91,%2,Y2) A Ve <o<a,¥ = Y1 = Y2

3. LEN.(z1,Y1,22,¥2) = \/(371 —22)2 + (11 — 2)?
4. PRJ(z,y,a) =z — ;2=

2. SEG(Il, Y1, 132,?!2) A SEG($2,y2,SU3»y3) - ANG(SChyl, 12,y2,$3,ys)

6. RAN(z1,y1, T3, Y2, T3,¥3) < ANG(x1, 1, T2, Y2, T3, Y3)
A LEN2($17 Y1, T, y?) + LEN2("I:2, Y2, T3, y3) = LENz(xl’ y17 z3, y3)

7. AAN(z1,y1, T2, Y2, 23- Y3) « ANG(21, Y1, T2, Y2, T3, Y3)
A LEN2(.'I:1, Y1, T2, ’!/2) + LEN2(-/L‘2a Y2, T3, y3) > LENQ(J:D y17 x3, y3)

8. AAN(xla Y1,Z2, Y2, T3, y3) 4 TRN(Ilvyla X2, Y2, T3, y3)a

9. RAN(xh Y1, T2, Y2, T3, y3) - TRN(Ila U1, T2, Y2, I3, y3) \4 REC(‘rh Y1, T2, Y2, T3, y3)

Theory 7, : Shadows. This theory contains two axioms:
SHD(z1, T2) & Yo, <r<,5(2) A Vay<oga, 75 ()
TRN(z1,y1, T2, Y2, T3, Y3) A
RAN(:EI? Y1, T2, Y2, T3, y3) A
PRJ(zy,y3) = ;1 A PRJ(23,¥3) = x, A
SHD(z;,z,) = TSH

32

where SHD is the symbol for a two-placed relation (end points of the shadow), TSH -
constant representing “shadow of a triangle”, and S is part of the language of the theory 7.
The first axiom states that shadows are continuous, and the second axiom defines conditions
for when a shadow can be T'SH, it is the shadow of a triangle. The idea behind this axiom is
the essence of this fusion problem. It can be understood by analyzing the scenario in Figure
2.13.

Theory T,, : The World. In our example we presume that our world can be in three
possible states: either it includes a rectangle, or a right triangle, or is empty.

—~(TRN A REC)

(TRN V REC) A-TSH = REC

Goal: G The goal of the system is to find our which of the following four situations is the

case in the world: (1) there is only a rectangle in the world (-TRN AREC), (2) there is only

~ aright triangle in the world (TRN A—REC), (3) there is either a single rectangle or a single
triangle in the world (-TRN A ~REC) (4) the world contains no objects (TRN V REC).

2.11.3 Formalization of Fusion in the Example

The specification of the rectangle/triangle recognition system was developed in Slang, the
language used by the formal method tool, Specware. Both Specware and the underlying
its implementation category theory are described in [10]. The structure of the resulting
specification is shown in Figure 2.14.

The specification was developed in a bottom-up fashion. In the first step we developed the
specification XREAL. This is an extension of the theory of real numbers (REAL). REAL is
one cf the theories that is provided with the library of Specware. We needed some additional
functions and thus we needed to extend this theory. The arrow from REAL to XREAL is
called import in Specware. It is an extension of the category theory concept of colimit
described in [10].

In the next step, theories of the range sensor, 7;, and of the intensity sensor, 7;, described
in Section ??, are encoded in Slang. Both theories need to import XREAL. In the Specware
implementation they are called RANGE-SENSOR and INTENSITY-SENSOR, respectively.
In a similar manner, the RECT-TRIAN specification is created; it imports RANGE-SENSOR
and encodes the axioms of the theory 7;,. SHADOW imports INTENSITY-SENSOR and
encodes the theory Zgp,.

The next level specification, RECT-TRIAN-SHADOW, is the main fusion block in this
whole specification. Here the two theories, RECT-TRIAN and SHADOW, are “glued” to-
gether along the common part - the real numbers. In the diagram of Figure 2.14 this common
part is shown as the ONE-SORT specification. The sort defined in this specification serves
as the common base that unifies the real numbers from the other two specifications. At the
same time all the axioms of the two component specifications are mapped into one set of
axioms. Then the sort and the operations of this specification are used to extend the colimit
by adding additional axioms specified by the theory 7.

33

WORLD

RECT-TRIAN-SHADOW

RECT-TRIAN / T~ SHADOW

e

ONE-SORT

RANGESENSOR INTENSITY-SENSOR
\ _

REAI

Figure 2.14: Diagram of the Fusion System

2.11.4 Reasoning about the Fusion System

The specification described above can be used for reasoning about the fusion system being
specified. For instance, we can reason about the goals of the system. Towards this end, we
would have to submit candidate theorems (queries) to a theorem prover and ask whether
they could be proven within the theory presented by the specification. In the stage of
specification development, such queries could be submitted by either the users (customer
side) or by the specification developers (developer side). First, one would need to choose
one of the goals from G. The preferable goals ate {~T'RN A REC} and {TRN A =REC},
since the success of one of these goals means a precise classification of the object in the
scene. The goal {—~TRN A ~RECY} is at the same level of detail. The goal {TRN V REC}
is less specific, since its success means that there is an object in the world, but it is not clear
whether it is a rectangle or a triangle. In addition to goals, some information about the
inputs, or ranges of inputs, would need to be entered into the system, in order for the prover
to resolve the validity of a theorem. The goal is posted to the top level system, WORLD.
Since this specification (theory) uses terms from the imported specification, the query is
propagated down to that specification, and the process continues until all the truth values
can be resolved.

Another application of such a specification is to use it for implementing the system. This
can be achieved in the process called refinement. In this process, the specification goes
through a number of refinement steps (called interpretations), the final step being translation
into a programming language. Specware supports such a software development process.

Once the system is implemented, its operation can be understood as model checking (in
logical terminology, (cf. [6]). If the system is implemented according to such a rigorous

34

methodology, as can be easily checked, it will always derive correct decisions, i.e., it will be
always right whether the world contains a triangle, a rectangle, one of them, or nothing. The
system is not perfect, in the sense that in some situations it will not be able to recognize
whether it is a rectangle or a triangle (it will simply say that there is an object in the
world: rectangle or triangle). Nevertheless, it can be seen that the fused system will be more
powerful than a system with only a range sensor, since it will be able to distinguish between
a rectangle and a triangle in all the situations similar to the one shown in Figure 2.13.

2.11.5 Summary of the Example

In this section we provided a formal definition of fusion on a small example. Fusion was
treated as a formal operator that is applied to two families of objects, theories and their
classes of models and returns a pair — a fused theory and a a class of fused models. The
general fusion procedure consists of two parallel tasks one of the syntactical nature and the
second of the semantical nature. Syntactic Theory Construction inputs a goal theory (with
a goal formula in it), theories of sensors and background theories and constructs one fused
theory for the whole system in which the goal sentence can be proved. Semantic Model
Construction inputs models of the theories utilized in the Syntactic Theory Construction
task and generates a class of models for the fused theory. '

The goal of our research is to find various schemes for performing fusion and to find
computationally efficient algorithms to achieve this goal. In this section we showed an
example of developing a fused theory, i.e., of the Syntactic Theory Construction. Since
we used category theory as our mathematical basis, and Specware as our implementation
tool, the correctness of the resulting specification and of the existence of the properties of
the specification are guaranteed by the formal semantics of Specware and of the Specware
theorem prover.

Formal specifications of fusion systems, like the one described in this section, can serve
two purposes. For one, we can reason about various properties of such specifications when
we are specifying such systems. This is a very valuable feature, since errors discovered in
the specification phase of system development are much cheaper to eliminate than in the
later stages. For instance, the same error discovered after deployment of a system can cost
hundreds, or even thousands, times more. The other purpose is that such specifications can
be transformed into code through the process of refinement. This process guarantees that the
specification is implemented correctly. This does not imply, however, that the specification is
correct, since this decision depends on the specifier and the user to make. However, having a
formally defined specification certainly makes such a process much more reliable and robust.

35

Chapter 3

Designing Information Fusion -
Systems

3.1 Towards a Reference Model for Information Fusion

In this chapter we present our research into the design of information fusion systems. Our
presentation consists of two parts: a reference model for information fusion systems, and
a formal approach to designing information fusion systems. The reference model part
was presented in our paper [21]. The formal approach was presented in [12]. Addition-
ally, we have a demo related to this topic which can be found on our project web page
(http://www.coe.neu.edu/kokar). :

As was stated in [21], we believe that the problem with designing information fusion
systems lies in the way most of us are viewing data fusion. By concentrating on fusion as a
means of operating on data, we make the error of thinking in terms of data fusion systems
rather thansystems with a data fusion capability.

Research is leveraged through re-use, and in the multi-disciplined field of data fusion re-
usability is required, not only of code, but also of architectures, des.gn specifications and
operating principles. In our research we take apart conventional nuiions of fusion process
modeling and re-invent it from an object-centered, multiple perspective viewpoint. We do
this specifically with the intention of developing re-usable concepts and methodologies for
designing and developing a data fusion capability at the system level. From a system design
viewpoint, data fusion is not about data but about structures. By combining theories and
models rather than data it is possible to reason about the system before the system is actually
constructed. We make no claims that we have addressed all of the problems, rather that we
have defined a crucial, but neglected, requirement and made the first tentative steps towards
its solution.

According to the dictionary definition of the term, to design means to (skillfully) work out
the structure or form of something, to plan or invent it, as intended for a specific purpose.
To work out the structure of a data fusion system and ensure that it is fit for the intended
purpose, at least three issues should be addressed: :

e A process model should be constructed that is simple enough to allow predictive analy-
sis yet rich enough to admit a variety of complex designs. The model should admit

36

a process of gradual, piece-wise refinement which eventually leads to the deployable
system but at the same time should not be overly constraining (and thus giving the
designer enough flexibility for choosing design solutions).

e A framework for specifying tasks (goals and solutions) should be developed which
permits achievability to be assessed without the need to implement the system. This
necessitates a means of representing the state of available knowledge about the world,
the information sources and the effectors (but not necessarily a representation of the
knowledge itself).

e A theory for the dynamics of the information and of the information processors should
be studied. The latter should incorporate both humans and machines and allow for
the decision making process to be modeled as a team activity.

In [21] we proposed a fusion reference model that addresses these issues in the following
way:

e A prescriptive but tractable object-relationship model
e A formal method for analyzing the relationships between objects
e A mathematical tool for simulating the information flow at the system level

e An appreciation of the psychological factors in the human components

In this chapter we discuss only the first two items with emphasis of the latter one.

3.1.1 Process Model

A process model is a description of a set of processes and the relationships between them. The
set of processes such determined should be constructed before the system may be regarded
as fully operational. As such it highlights the component functions which the system has
but makes no statement regarding their software implementation or physical instantiation.
Existing data fusion models (such as JDL3 and Omnibus for example, see Figures 3.1 and
3.2) are still largely descriptive models and thus cover a large number of designs that are it
should be able to rule out, even before introducing the constraints imposed by the specific
application.

In the fusion model proposed by the US Joint Directors of Laboratories Data Fusion Sub-
Group [37], the Dasarathy model [9] and the Waterfall model [30] the data fusion process
is divided according to the abstraction of the information being fused. There is therefore
no need to make sequencing of functions or processors explicit. Typically the levels of
abstraction include:

e Sensor data - such as scalar measurements, waveforms or images

e Signals - which are the result of some elementary signal processing, alignment or reg-
istration activities

37

Level 4 Databases
Process : e

Source |refinement
HCI

1 i | B
1 1 1 i |

Level 3
Implication
refinement

Level 0 Level 1 L'evel'z
pre-processing|| Single object Situation

pre-detection ||refinement || Fefinement
b 2

: %Aggregate

Temporal
registration objects
Spatial
" registratio

Figure 3.1: The JDL Data Fusion Process Model

e Features - which capture the relevant characteristics of the signal and represents the
lowest level at which desired capabilities affect the information being stored

e Object state estimates - which is concerned with the estimation and prediction of
continuous (e.g. spatial or kinematic) or discrete (e.g. behavior or identity) states of
objects

e Situation estimates - which introduces context by examining the relations among enti-
ties, aggregating objects into meta-objects and placing interpretations on the situation

e Planning decisions - implication and possible courses of action are analyzed in light of
the current situation

While the models referred to in the previous section are centered on the level of abstraction
of the information, the intelligence cycle [35], the Boyd control loop {5] and the Omnibus
model [5] are mainly organized from a functional viewpoint. In this case the sequence of
functions that are to be performed are made explicit. Each of these models uses a four-stage
model:

e Feeding - observing or collecting information and passing it on
e Informing - collating and orientating the information to increase its relevance

e Directing - by evaluating choices and making decisions

38

l Decision making }:

H Context processing

Soft decision §* Hard decision fusion

fusion

Decide

4 i H
’ Pattern processing i
Feature ’-i £ >
jon | e =
ﬁmﬁf Obsewe

Sensor data :
fusion®

Figure 3.2: The Omnibus Data Fusion Process Model

e Managing - implementing those decisions

Implied by this structure are the agents that perform the functions (actors, perceivers,
directors and managers). The merging of these the three viewpoints of information, functions
and agents leads us to the object-relationship model presented in the next section. ‘

A natural extension of all of the above models can be captured using a model based on
object-oriented design. This is shown in Figure 3.3, where only the first layer class diagram
of an object oriented system that implements such a model is shown.

This class diagram shows the agent and information perspectives of the model. The
notation is similar to that used in object-oriented cesign (for instance in UML - the Unified
Modeling Language [3]). A class is shown as a bux - an actor is an example of a class. A
class may be composed of several component classes connected to it via a diamond symbol
- for instance a sensor is a component class of an actor.

e Component classes have cardinality constraints - for instance an actor may possess no
SEeNSOrs Or many Sensors

e A class may have cardinality constraints - for instance an actor must have at least one
of effector or sensor

e Two classes may be directionally related by a function - for instance inform is a function
of perceiver

e A function has cardinality constraints - for instance each director may be informed by
one or more perceivers and zero or more other directors

At the core a fusion system is described as a set of agents (computers or people) that are
arranged in the same sequencing loop as the earlier functional models. From the information

39

inform | Director drect
b !
RS — [
/ ! AN
/ ; : \
! | N §
Perceier . - T Manager
- N Loy anager
e
|
feed manage |
Actor | _ .
///’/ \\
/ \
g \
Eflector Sensor |

Figure 3.3: First Level Class Diagram of the Fusion Process Model

perspective fusion is described as a set of data abstractions which map directly onto the JDL
and other models. The level of abstraction is a consequence of the agents, their ordering and
their functions, rather than being imposed as an intrinsic property of the system. By allowing
the state class to contain information about this information as well as the environment the
loops-within-loops alluded to by Bedworth [5] are easily included. This captures well the
ideas that “one man’s knowledge is another man’s data” (Frank White). Although Figure
3.3 shows only one layer (our paper [21] shows two), this layering of perspectives can continue
until the system is deployed (and then further to assist in its maintenance and replacement).

3.1.2 Relationship Analysis

it is important to separate the system knowledge (the data and procedures which operate
on that data within the system) from the state of the general knowledge (the availability
and quality of data or the specifications of the procedures). The system knowledge will only
become available once a-version of the system is constructed whereas the state of the general
knowledge will be available during the initial design process. This general knowledge will
be input to the development process, while the system knowledge will be the output of this
process. Consequently, in the development process the knowledge must be manipulated.

As we stated earlier in this report, this feature is a distinguishing one for our approach
to fusion: we consider fusion as an automatic (or at least semi-automatic) manipulation of
knowledge structures, rather than just data. This point of view raises the level of abstraction
- instead of considering algorithms that manipulate data objects, we need algorithms that
manipulate algorithms (which in turn manipulate data). As a consequence of this departure
point, we need methods that can provide an ability to reason about the performance criteria
of fusion systems that are being designed. This kind of ability is typically achieved through
the analysis process carried out by the (human) developer of the fusion system (during design)

40

and through simulations (during system verification). The requirement on “reasoning” in
the context of the human makes an implicit assumption that the human is responsible for
managing the degree of rigor in the reasoning process. The human is expected to carry out a
sound reasoning process, rather than just guessing. The human is also expected to relax the
rigor, to an acceptable level, whenever there is a lack of information that would be needed
for a fully sound process. This kind of a requirement is very difficult to implement in a
mechanical reasoner. Typical approaches to this problem are on the edges, either a fully
consistent process like logic (but then we encounter the known problems of undecidability)
or a heuristic approach like expert systems (but then we cannot guarantee consistency). In
order to deal with this problem, we selected a formal method approach based on category
theory.

Within the framework of category theory we can address all of the problems stated above.
In particular, we can analyze the effects of combining (fusing) structures (e.g.. algorithms)
into one structure with respect to the system level criteria. In other words, we can analyze
various design choices. The input to this fusion process is the state of the general knowledge
(as stated above) and the system level requirements (we also refer to this as “knowledge
structures”). The development consists of a number of steps of structure fusion. Since each
of the steps is provably correct, i.e., the resulting structure is guaranteed to preserve the
system requirements of the previous step, the whole process is provably correct.

The process consists of two phases: specification development and refinement. The specifi-
cation development phase ends with a complete specification of the system. The refinement
phase takes such a complete specification and ends with code. Again, since only formal,
provably correct operators are used in the refinement process, the resulting code is provably
correct with respect to the specification. In the rest of this chapter, we give the main ideas
of our approach.

A category [32] is an abstract mathematical construct consisting of category objects and
category arrows. Category objects are the objects in the category of interest. In our case they
are algebraic specifications of computational objects; the category is called Spec. Category
arrows define a mapping frum the internal structure of one category object to another and
are also called morphisms. In our case they are specification morphisms. In the category
Spec, specification morphisms map the sorts and operations of one algebraic specification
into the sorts and operations of a second algebraic specification such that the axioms in the
first specification become provable theorems in the second specification. Thus, in essence, a
specification morphism defines an embedding of one specification into a second specification.

Specification morphisms are required for defining and refining specifications. Additionally,
we need the combination, or composition, of existing specifications to create new specifica-
tions. This is where category theory is extremely useful in information fusion. Often two
specifications that were originally extensions from the same ancestor need to be combined.
Therefore, the desired combined specification consists of the unique parts of two specifica-
tions and some ”shared part” that is common to both specifications (the part defined in
the shared ancestor specification). This combining operation is called a colimit [32]. The
colimit operation creates a new specification from a set of existing specifications. This new
specification has all the sorts and operations of the original set of specifications without
duplicating the "shared” sorts and operators.

Diagrams are the main modeling tool used to represent category objects and category

41

arrows. A diagram consists of nodes representing category objects, and arrows, representing
category arrows. In our approach, the category objects are the specifications (structures)
of sensors, objects of interest (e.g. targets), goals of the system, general knowledge, and
system knowledge. A whole system is represented as one diagram. Once such a diagram
is developed, one can reason about the properties of the system by using theorem proving.
In other words, one needs to state a hypothesis and then prove or disprove the hypothesis
within the knowledge included in the diagram.

An example of a diagram for a simple object recognition system was presented in Figure
??. In this figure, the top category object is termed WORLD. It contains specifications of the
world constraints, e.g., that two (world) objects cannot appear in the same place at the same
time and what are the expected types of objects in this world. This specification embeds
the specification called RECT-TRIAN-SHADOW, represented as a morphism between the
two category objects. RECT-TRIAN-SHADOW, in turn is formed as a colimit of three
specifications below. The lower layer represents specifications of the two sensors involved
- RANGE-SENSOR and INTENSITY-SENSOR. At the bottom there are specifications of
mathematical objects needed to model the sensors.

As we have shown in our earlier work [25], formal methods (such as category theory)
provide a reasoning framework that allows to analyze how abstract, system level performance
criteria can affect design choices. Formal methods have recently been successfully applied
to the analysis of relatively simple data fusion systems. In order to apply formal methods
to design systems for real-word applications of typical complexity, system solutions and
theories are needed that constrain the design space. In this paper we outline an approach
to combining these methods and tools with other methods and tools that are relevant to the
development of information fusion systems.

We have outlined a relationship model for data fusion based on object-oriented principles
that goes beyond existing descriptive models and provides a prescriptive model that can be
gradually refined to the point where it can be deployed. The model is amenable to analysis
at the design stage through the use of formal methods. The information flow in a design
may be studied using Fefri-net theory. The human aspects of information fusion systems
are easily accommodaved within the model, since no distinction is drawn between human
and computer objects until model is viewed from the realization perspective.

The orthogonality of abstraction and control has not yet been fully integrated into our
model. This needs to be resolved before moving on. The design approach also needs to
evolve from a largely theoretical model to a practical prescription for efficient system design.
The associated tools need to be honed to provide tractable analyses of realistic, full-scale
problems. As these analysis tools develop in a fusion setting a network of specifications and
theories will need to be established and the fusion object model populated with specifications
for generic fusion objects (at least) from the agent and information perspectives. Particular
specializations can then inherit the attributes and behavioral characteristics of these objects.
The practical experience acquired using a case study has much to offer and we should look
towards applying this design philosophy to a medium-scale system in the near term.

Recently, the Unified Modeling Language (UML) has become a de- facto standard for
representing software systems. The object diagram shown in this paper does not use the
UML notation. It may be useful, for the sake of reaching a wider software engineering
community, to translate this diagram into UML. Also, we may incorporate some aspects

42

of the Unified Software Development Process (USDP) to capture the evolution of a fusion
system - from specification to implementation. Additionally, in order to combine such a
diversity of representations of a fusion system as described in this paper, we may employ
the concepts of various views, as promoted by the Reference Model for Open Distributed
Processing (RM-ODP), in which five different views of a system are used to represent the
interest of various stakeholders.

3.2 FIFF: Formal Information Fusion Framework

In this section we present the results of our efforts to develop a formal framework for
developing information fusion systems. In this project we developed elements of such a
framework. The most current status of this effort is posted on the project’s web page
(http://www.ece.neu.edu/groups/ifg/demo.html).

3.2.1 Problem Statement

As we have already said in this report, the state of the art in the area of designing in-
formation fusion systems is far from being optimal. While there numerous cases of great
solutions for solving various problems where information fusion is required, there is a lack
of a methodology for designing systems with information fusion capabilities. In most cases,
researchers and engineers propose a solution to a specific problem. In other words, the lit-
erature of information fusion is full of solutions that were driven by a specific need, rather
than by a need for a design methodology for all kind of information fusion systems. Another
problem is that the designer would need to be able to evaluate the solution well before it is
implemented. Therefore, we need a framework for such evaluation.

In our research we focus on “generic” information fusion systems. In particular, we are
interested in methods for designing of all kind of information fusion systems. We are also
interested in techniques that allow the designer to evaluate designs, not just implemented
sy<tems. The design knowledge is valuable. Therefore, we would like to be able to reuse
such knowledge once it is developed.

In Chapter 2 we showed how we formalize the notion of an information fusion system. We
also showed a top-down approach to the development of information fusion systems. In the
first step, we identified the “boundaries” of a fusion system (see Figure ??). We identified
all inputs and outputs that such a system should have. Then we stated that the system
should have a goal. The designer then must make sure that the goal is satisfied by the
design. The formalization of Chapter 2 includes the formalization of a goal (specification).
Then we showed two steps of decomposition of our problem. In the first step we decomposed
the life of such a system into three phases: Specification Synthesis, Code Generation and
Information Processing (see Figure 2.2. Only in the last phase the system actually performs
information fusion. In order to reach this phase, the system first must be developed. We
decomposed the development phase into two sub-phases: Specification Synthesis and Code
Generation. The phase of specification synthesis requires the expertise of the given domain,
i.e., the domain for which the system is developed. For instance, if the system is supposed
to recognize airborne targets using various a SAR and an infrared sensor, then there is a

43

clear need for the expertise in the areas of both the targets, including various scenaria, and
sensors (in this case radars and IR). The next phase, Code Generation, requires expertise in

computer science, more than in the application domain.
In summary, our goal is to develop a Formal Information Fusion Framework (FIFF) with

the following characteristics:

e It is generic (applicable to various kind of systems and application domains)

It is reusable (the designer will be able to reuse specs developed for different systems)

It has the inference capability (the designer will be able to analyze designs before
implementation)

It guarantees correctness of developed code (it is possible to prove that the code im-
plements a given specification)

Towards this goal we have developed elements of the following:

e Basic vocabulary for specifying and designing fusion systems

Formal theories of following fusion-related components sensors

— physical worlds
— geometry

— registration (refer to any of means used to make the data from each sensor com-
mensurate in both its spatial and temporal dimensions)

Mechanisms for organizing, storing, and searching for the above theories using ontology
structure

Basic templates specifying fusion system:s

Procedures for specifying, designing, implementing fusion systems

e Examples/case studies

3.2.2 Use Case: Design an SFS

We started our analysis with a top description of a use case for the activity of designing an
Sensor Information Fusion System (SFS). The use case diagram is shown in Figure 3.4. The
diagram uses the Unified Modeling Language (UML) [3] notation. The oval represents a use
case, i.e., a functionality that is to be included in the system under design. The strawman
represents the actor involved in the use case. In this case the actor is the designer of the
Information Fusion System. As shown in this figure, the main use case is called “Design
SFS”. It includes two other use cases - “Define Goal” and “Specify Sensors”.

The goal is defined in the language as presented in Chapter 2. The diagram of the goal
specification for this case is shown in Figure 3.5.

The specs for this specification are shown in Appendix A.

44

O

<<include Define Goal

SFS Designer Design SFS Q

Specify Sensors

Figure 3.4: Use Case: Design an Information Fusion System

3.2.3 Information Fusion Ontologies

As part of this project we have formalized a number of concepts that are used in the infor-
mation fusion literature. We expressed these ontologies in Slang, the language of Specware
[1]. Two major parts of this ontology are the ontology of geometry and the ontology of sen-
sors. We covered only those parts of the ontologies that were needed for the demonstration
purposes. Consequently, only parts of geometry and only a number of sensors have been
specified. A hierarchy of sensors in the ontology is shown in Figure 3.6. '

The diagram of the geometry ontology is shown in Figure 3.7. The specifications in Slang
are shown in Appendix A.

3.2.4 Specification Synthesis

Although the goal specification seems to contain all the necessary information for code gen-
eration, it is not quite so. The goal spec contains the signatures of the decision functions.
But this spec does not contain enough constraints (axioms) to fully define that function.
Therefore, after the goal specification is defined and after the sensor specifications are se-
lected from the ontology repository, the designer has to synthesize the final specification. The
final specification must have all the necessary details to uniquely define the decision func-
tion. In this process, the designer uses the background knowledge base (the ontology of the
background knowledge) and a computer-aided formal method tool, for instance Specware.

The scheme followed by the designer is shown in Figure 3.8. In this figure, K B, represents
the knowledge base (including the sensor and the geometry specifications). K, represents
the subset of K B, that is relevant to the problem specified in the goal spec. K; represents
the subset of K, that is actually needed to synthesize the final spec. The goal specification
is represented as Problem Spec. The arrow u stands for the matching function, i.e., the
function that determines which of the specs in the ontology are relevant to the given goal
spec. The arrow i represents the insert operation, or the import morphism.

More details of this process are given in the demo on our project’s web page

45

(http://www.ece.neu.edu/groups/ifs/demo.html).

3.2.5 FIFF: Features

As we stated earlier in this report, our goal is to develop a framework that has the following
characteristics:

1. It is generic.
2. It is reusable.
3. It has reasoning capabilities.

4. Tt guarantees generation of provably correct code.

To prove the first point, i.e., that the FIFF is generic, we showed that the same procedure
can be applied to the design of various fusion systems. This is shown in Figure 3.9. For
instance, the framework can be used to design an Automatic Target Recognition system that
uses two sensors, a range sensor and an intensity sensor. The same framework can be used
to design a surface reconstruction system that reconstructs the surface using three contour
Sensors.

To show that the FIFF is reusable we need to show that specifications developed for one
application can be reused for developing a different system, as shown in Figure 3.10. As
shown in this figure, the specs developed for ISF;, a system for recognizing rectangle and
triangles, are used for developing an ATR system that uses a SAR and a MMW radars.

To show the inference capabilities, we need to show that we can formulate and prove .
theorems about the developed specs. In this step we rely on the theorem proving capabilities
of Specware. We used the theorem prover provided with Specware license. Specware has the
capability of integrating various theorem provers. For instance, for the rectangle/triangle
recognition problem we could formulate a theorem like:

Theorem 3.2.1 Target(Image(X;, X2) = rectangle = Shadow(X; — A, X, — A)

This theorem says that if there the system recognizes that there is a rectangle between
the X; and X, coordinates, then there must be a shadow between X; — A and X, — A. In
Chapter 4 we show more examples of theorems that can be proved about fusion systems.
This capability is very important, since this provides means for rigorous reasoning in the
design phase. Otherwise, if we lack a formalization of the problem, the only remaining means
are either to make an intuitive assessment or test the performance of the system after it is
implemented.

Finally, the last important feature of the FIFF approach is that the code developed using
this approach is provably correct with respect to the specification. In other words, the code
is guaranteed to satisfy all the requirements of the specification. To show this feature of
FIFF all we had to do is to generate code through refinement. To show this we did not
have to develop any new capabilities, since this capability is within the capabilities of the
Specware tool [1].

46

GOAL-with-ASSOC

t

GOAL |
Set-of Tauget, Taget |

~ " ~

PRE-GOXL T-. SEX
Tau Set, _,'E

-———
P -
.....

-

-
-_——
S -
.-

-
-
-

XL, Range, {TL} ,Y, Target, (Tw) 2, Intensity, (T2)
fIIX L >Range haly X, Y ->E £2: X2 > Intensity

Nl

RS Xik/ Xy

Xx ™Yy

Figure 3.5: Diagram of the Goal Spec for Recognition of Rectangles and Triangles

47

MMW

ﬁ PassiveSensor

sensor

ActiveSensor

BoWavelength

“targetRange()
®rangeResolution()

N

FLR

M |

Electro-Optical Systems

Microwave Systems

B

X

Microwave

N\

AN
LADAR

SAR

Figure 3.6: Diagram of the Sensors Ontology

48

2D_Geomelry

Circles

Pentagon

! “olygon ;
Point Segment b Line
v
Triangle Quadilberal
SoubeTriange RightTiiangle ObluseTriange Pardidogam Trapezdd
BqTiiange
Rectange Rhombus

Figure 3.7: Diagram of the Geometry Ontology

49

Problem
Spec

S

Figure 3.8: Specification Synthesis Scheme

KBs

50

Goal: ATR \ FIFF

Range sensor |~ Developer 1
Intensity sensor / T Rectapgle/T riangle Recognition
Goal: Surface FIFF |
reconstruction \ / o

Contour sensor 1 Devcldper 2

Contour sensor 2

\ Surface

AN

Contour sensor 3 reconstruction

system

Figure 3.9: FIFF is Generic

51

SAR spec | *—

MMW spec <
IFS_1
Tri rd
riangle spec -
<4— Rectangle spec | *
IFS_2 SFS Developer 2
FIFF

Figure 3.10: FIFF is Reusable

52

Chapter 4

Reasoning About Uncertainty in the
Design Phase

4.1 Introduction

In this section we describe a formal approach to incorporating uncertainty of input infor-
mation into the fusion process and decision making. Fuzzy set theory (fuzzy numbers, and
fuzzy operators) is used to characterize and then manipulate (reason about) uncertainty. A
library of specifications of fuzzy set theory is developed using category theory and Specware,
a tool that supports category theory based algebraic specification of software. The library
is then used to construct specifications of fuzzy information processing systems. The main
construction in this process is composition. Category theory operators of limits and colim-
its are used for composition. As an example, a fuzzy edge detection algorithm is shown,
which uses fuzzy operations in its processing. One of the advantages of this approach is that
every aspect of the fusion process is specified formally, which allows us to reason about the
uncertainty associated with the sensors and the processing.

In ‘aformation fusion systems, uncertainty of information comes into the picture for a
number of reasons: incompleteness of the coverage of the environment, inaccuracy of the
sensors (e.g., limited resolution of sensors), background noise in the environment, and others.
There are many ways of dealing with uncertainty. Statistical methods and efficient filtering
algorithms have been applied to this area using mathematical tools, such as FFT or wavelets,
but none in a completely formal way, i.e., these mathematical formalisms have been used to
derive algorithms by humans, but not by computing machines (computers).

Why is a formal method so important? We know that in order to design a fusion system,
we need to be able to reason about the impact of the uncertainty of the input information on
the outcome of the fusion system before the system is built. In other words, we need to be
able to predict the performance of the fusion system for any given level of uncertainty and
guarantee that it will give satisfactory solutions provided that the uncertainty of incoming
information is within some prespecified bounds. With conventional methods, reasoning about
the performance of the system cannot be done automatically, but even humans might draw
different conclusions about a specific system due to the lack of full mathematical specification
of the system. '

53

In this paper, we describe the process by which uncertainty is formally incorporated into
the fusion system design, so that it allows us to reason about the uncertainty of the decisions
of the fusion system while in the design phase. Section 4.2 describes how a fuzzy set theory
library is built using category theory and Specware, and how the library is used to construct
specifications of fuzzy information processing systems. This is the main part of the paper.
Section 4.3 describes a simple conventional edge detection algorithm, and then maps this
algorithm into a corresponding fuzzy edge detection algorithm in which all the operations
are replaced by fuzzy operations. This part serves as an example of the application of our
approach to reasoning about the uncertainty in information fusion. Section 4.4 concludes
the chapter and gives directions for future research.

4.2 Fuzzy Information Processing

Before fuzzy set theory was introduced by Zadeh in 1965, uncertainty was solely treated by
probability theory. But there are some situations where uncertainty is non-probabilistic [42].
In information processing systems, for instance, we cannot guarantee that the input data
are precise numbers; instead they are often referred to as approzimately z, or around z. The
reason for this uncertainty is not that we measure the values with some error, but simply
because we do not know what it should be. This uncertainty of imprecision can be modeled
by using fuzzy set theory. Another example is evident in linguistic expressions, such as tall,
big, hot, or likely, unlikely, etc. This linguistic uncertainty, of vagueness or fuzziness, can be
well described by appropriate fuzzy sets. A
In this paper we use fuzzy set theory to handle uncertainty in information processing
systems. We show how fuzzy information processing systems can be specified by using
category theory [32] and Specware [1, 2]. Category theory is a mathematical technique that
is suitable for representing relations between various types of objects [32]. Specifically, we are
interested in relations between (algebraic) specifications. Specware is a tool that supports
category theory based algebraic specifications < software [36, 2]. This section will talk about
the construction of a fuzzy set theory library and fuzzy information processing specifications.

4.2.1 Construction of Fuzzy Set Theory Library

The fuzzy set theory library is composed of specifications (also called specs) of the main
concepts of fuzzy set theory: fuzzy sets, fuzzy numbers, a-cuts, and fuzzy arithmetic oper-
ations (cf. [18, 19, 20]. These specs are useful in composing formal specifications of fuzzy
information processing systems.

4.2.2 Fuzzy Sets

There are a number of definitions for fuzzy sets. Two most popularly used definitions are
listed here for comparison, out of which we chose the second one.
Definition 1 [16]: Fuzzy set A is a set of ordered pairs

A= {(z, pa(z))lz € X}

94

where X is a collection of objects (called universe of discourse), and pa(z) is the membership

function. This function takes real values between 0 and 1.
Definition 2 [20]: Fuzzy set A is a function

A: X —[0,1],

where X is the universe of discourse.

The difference between the two definitions is that the former defines a function that is not
necessarily total on X, while the latter requires that the function be total. Since Specware
requires that all functions be total, we chose the second definition of fuzzy set for building .
specifications. The diagram of the specification of fuzzy set is shown in Figure 4.1.

REAL UNLINTVL

sort — SOrt

Real Uni-intvl =
Real |
between-zero-one?

SET

SOrts
Set

FUZZY-SET
colimit of

- UNLINTVL

and SET
sorts

E

Set
Uni-intv]
Fuzzy-set =

E-> Uni-intv]

i: import

Figure 4.1: Diagram for Fuzzy-set

The spec UNI-INTVL imports REAL and introduces a new sort: Uni_intvl =
FUZZY-SET is a definitional extension [5] of the colimit of UNI-INTVL and SET; it defines

95

Recl | between_zero_one

a function sort: Fuzzy_set = E — Uni_intvl, where E is the type of all elements in Set. In
the FUZZY-SET spec, a-cut and height are defined as

op alpha_cut : Fuzzy_set, Uni_intvl — Set
op height : Fuzzy_set — Uni_intvl

The a-cut is a powerful concepts that links fuzzy sets with sets. The application of the a-cut
to a fuzzy set results in a set, and thus all operations and relations of sets can be applied to
the a-cuts of the fuzzy set, or to a-levels.

4.2.3 Fuzzy Numbers

Fuzzy numbers are one specific type of fuzzy set. The universe of discourse for fuzzy numbers
is real numbers. Fuzzy number A has the form: A : Real — [0,1]. It has the following
properties:

e A must be a normal fuzzy set. That is, the height of the fuzzy set A should be 1:

height(A) = sup A(z) =1

zeX

e A must be a convex fuzzy set. The property of convexity is captured by the following
theorem:

Theorem: A fuzzy set A on Real is convex iff
A(Azy + (1 — N)z2) > min[A(zy), A(z))
for all 21,25 € Real and all A € [1,0], where min denotes the minimum operator.

e a-cut of the fuzzy set A should be a closed interval for every a < (0, 1].

These properties are intuitively obvious. A fuzzy number is normal since our concept of a
fuzzy number “approximately z” means that it is fully satisfied by z itself. We require that
the shape of the fuzzy number be monotonically increasing on the left and monotonically
decreasing on the right, so a-cuts of any fuzzy number should be closed intervals, which
leads to the property that fuzzy numbers are convex.

Fuzzy number is specified in the spec FUZZY-NUMBER, which imports FUZZY-SET and
adds one sort aziom: E = Real. 1t also adds two axioms: normality and convezity.

4.2.4 Fuzzy Operations

In [20], two methods have been presented for developing fuzzy arithmetic. One method is -
based on interval arithmetic. Let A, B denote two fuzzy numbers, * denote any of the four
basic arithmetic operations, +, —, x,and-+. Then A x B is a fuzzy number, which can be

represented by
AxB= |J (“A+*B) x

a€l0,1]

96

This method requires using a-cuts of fuzzy numbers. The second method represents fuzzy
number A*B in the following way:

(A* B)(z) = sup min[A(z), B(y)]

Z=x%Y

for all z € Real. We chose the latter one because it is more explicitly expressed, thus more

convenient to be specified in Specware.
Fuzzy arithmetic operations are specified in the spec FUZZY-ARITHM which is a defin-
itional extension of FUZZY-NUMBER, with fuzzy operations being of the following types.

op f-add : Fuzzy_number, Fuzzy_number
— Fuzzy_number

op f_sub: Fuzzy_number, Fuzzy_number

. — Fuzzy_number

op f-mult : Fuzzy number, Fuzzy_number
— Fuzzy-number

op f_div : Fuzzy_number, Fuzzy_number
— Fuzzy_number

4.2.5 Fuzzy Information Processing

There are three stages in fuzzy information processing: fuzzification, fuzzy reasoning, and
defuzzification. They are covered in the following three subsections.

4.2.6 Fuzzification

The first step in fuzzy information processing is to fuzzify input data. Th2.e are many ways
to do this. We chose the one in which a triangular membership functic.. is involved. For
a given value ¢, we define the triangular fuzzy number A, such that for all z € Real, A(x)
satisfies the equation '

0 ifr<c—4,
orz>c+9

(z—c+9)/6 fc—0<z<c

(c+6—2)/6 fc<z<c+d

Az) =

In this equation, § represents the uncertainty level. The larger the §, the more uncertain the
input data.) '

One kind of typical input data for an information fusion system is image, which is gen-
erally sampled into a rectangular array of pixels. Each pixel has an x-y coordinate that
corresponds to its location within the image, and an intensity value representing brightness.
The spec IMAGE imports INTEGER and REAL, and defines a function sort: Image =
Integer, Integer — Real. The spec FUZZIFICATION is generated by taking the colimit
of IMAGE and FUZZY-ARITHM, and defining another function sort: Fuzzy_image =

37

Integer, Integer — Fuzzy_number. The diagram for this specification is shown in Figure
9. FUZZIFICATION maps Image to Fuzzy.image, so that each pixel has a corresponding
fuzzy triangular number instead of a crisp number. Also in this spec, two operations are

defined:

op fuzzify : Real, Nonzero — Fuzzy number
op fuzzify.2: Real — Fuzzy_number

where fuzzify takes a crisp number and some uncertainty level, and generates a fuzzy
triangular number. The operation fuzzify 2 deals with the situation when the uncertainty
level is zero, which means there is no fuzziness about the result. The latter operation is
specified so that a crisp number can also be regarded as a fuzzy number.

IMAGE
sorts
Integer
/Real FUZZIFICATION
Imag\\ sorts
/ = Integ%agp{\‘lnteger
ONE-SO -> Real Real
sort Image
X /Fuzzy-number
Fuzzy-image
/ = Integer, Integer
FUZZY- THM -> Fuzzy-number
sort
“Real

Fuzzy-number

Figure 4.2: Diagram for Fuzzification

4.2.7 Fuzzy reasoning

Fuzzy reasoning takes fuzzified inputs and applies fuzzy arithmetic operations on them.
For instance, as we discussed above, the input can be a fuzzy image in which each pixel
corresponds to a fuzzy triangular number. While for crisp numbers we apply some arithmetic
operations, like 4+, —, x, and=, for fuzzy numbers we will apply f_add, f_sub, f.mult, and
f_div, as specified in FUZZY-ARITHM. Some additional fuzzy operations are specified there
too, which will be useful in our applications. One is fuzzy minimum(fmin), another is fuzzy

58

maximum(fmaz). Let A, B denote two fuzzy numbers, then

fmin(A,B)(z) = sup min[A(z), B(y)]

z=min(z,y)

fmaz(A,B)(z) = sup min[A(z), B(y)]

z=mazx(z,y)

for all 2 € Real. The results of these two operations are fuzzy numbers. These two operations
introduce partial ordering of fuzzy numbers.

Corresponding logic operations such as fuzzy equal(fequal) and fuzzy less than(flt) are
also specified here. There are many ways to define such operations. Here we have chosen
the following:

op fequal : Fuzzy number, Fuzzy_number
— Fuzzy number

op flt : Fuzzy_number, Fuzzy_number

— Fuzzy number

The operation fequal takes two fuzzy numbers, defuzzifies them and compares the differ-
ence of the result. If the difference is less than a threshold, fequal will return a fone, which is
generated by fuzzify(one,a). a is the value where the two membership functions intersect
and a will be zero if there is no intersection. If the difference is larger than the threshold,
fequal will return a fzero, which is generated by fuzzify(zero,). The intersection of the
two membership functions are taken to generate «, the same way as in fuzzi fy(one,a').
The result of fequal and flt is either fone or fzero. This is the fuzzy equivalent of boolean
values true and false. They are not limited to stating whether something is a fact or not, but
in addition to this, they give the value of the uncertainty associated with such a statement.

4.2.8 Defuzzification -

The input to the defuzzification process is a fuzzy number, and the output is a crisp number.
There are several defuzzification methods - centroid calculation that returns the center of
the area under the curve of the fuzzy number, middle of maximum that returns the average
of the maximum value of the fuzzy number, largest of mazimum, and smallest of mazimum.
We chose the largest of mazimum method to implement the defuzzification process.

Defuzzification is implemented in DEFUZZIFICATION, which is a definitional exzten-
sion of FUZZY-NUMBER. This spec defines the defuzzify operation as: op defuzzify :
Fuzzy_number — Real. It takes a fuzzy number, finds the largest of maximum of its mem-
bership function, and returns the real number as defuzzification result. In our situation
we fuzzify the input data using triangular membership function, so after fuzzy operations
are applied to these fuzzy triangular numbers, the result will always have only one peak
value. Therefore the largest of maximum of its membership function will always return only
one value. There are situations where other types of fuzzification are used, and then the
defuzzification spec should be more complex.

59

4.3 An Example: Fuzzy Edge Detection

In this section, we will show how to use fuzzy information processing specifications to trans-
late a standard detection algorithm into a fuzzy detection algorithm, and see how uncertainty
of input data propagates during the process and influences the final decision.

'4.3.1 Edge Detection Algorithm

An edge in an image could be considered as a boundary at which a significant change
of intensity, I, occurs. Detecting an edge is very useful in object identification, because
edges represent shapes of objects. There are many algorithms for edge detection [4, 26].
The objective of an edge detection algorithm is to locate the regions where the intensity
is changing rapidly. So we can decompose the whole process into two steps, the first is to
derive edge points in an image, the second is to apply edge detection method only to these

points.

We use the Laplacian-based method to derive edge points. Edge points are where the
second-order derivatives of the points are zero, zero crossing. So edge points can be searched
by looking for zero crossing points of V2I(z,y), which can be calculated by the equation

Vi(z,y)=I(z+1,y)+ I(z-1,9) +

In order to avoid false edge points, local variance is estimated and compared with a
threshold. The local variance can be estimated by

1 +M y+M

0'2(1" y) = (—z-—m Z Z [I(k’l,kg)

ki=x—M ko=y—M

—m(ky, k2))?

wilere

x+M y+M

kl—:r M ko=y-M

with M typically chosen around 2. Since ¢?(z,y) is compared with a threshold, the scaling

factor (2M Ty can be eliminated.

The spec }EDGE—POINT imports IMAGE and defines a sort and some ops:
sort_axiom FEdge_point =
(Integer, Integer)|edge_point?
op edge_point? : Integer, Integer
— Boolean
op grad : Integer, Integer — Real
op var : Integer, Integer — Real

60

where grad and var represeﬁt gradient and local variance respectively, and for all Integers
x,y:

edge_point?(z,y) <
grad(z,y) = 0 Avar(z,y) < thrd

Therefore a pixel at (z,) satisfies an edge point if and only if the gradient equals zero and
the local variance is less thar the threshold. Otherwise the pixel is not an edge point.

4.3.2 Fuzzy Edge Detection

Now we will use fuzzy information processing specifications and translate the above edge

detection algorithm into a fuzzy edge detection algorithm.
Fuzzy edge detection is specified in FUZZY-EDGE-POINT, which imports FUZZIFICA-

TION, and defines a function sort:

Fuzzy_edge_point = Integer, Integer

— Fuzzy_number

which maps each pixel to a fuzzy number representing the level at which the pixel satisfies
an edge point. This fuzzy number represents fuzzy boolean. Instead of making the decision
that a pixel is an edge point or is not an edge point, a fone or a fzero is given. A fone
states that the pixel satisfies an edge point with uncertainty as described by the fuzziness of
this fone. A fzero, on the other hand, states that the pixel does not satisfy an edge point
with uncertainty that is described by the fuzziness of this fzero. The following constants
and operations are specified:

const delta : Nonzero
: const thrd : Real
op fgrad : Integer, Integer — Fuzzy_number

op fvar : Integer, Integer — Fuzzy_-number

where fgrad and fvar represent fuzzy gradient and fuzzy local variance respectively. Cal-
culation of fgrad and fvar requires fuzzy arithmetic operations that have been specified
before. The operations fequal, flt and fmin are also needed here to realize fuzzy edge
detection. The operation fequal takes two fuzzy numbers and returns a fzero or a fone,
representing how similar these two fuzzy numbers are. The operation flt takes two fuzzy
numbers and returns a fzero or a fone, representing how much the first one is less than the

second one. For all Integers z,y:

Fuzzy_edge_point(z,y) =
fuzzy_min|fequal(fgrad(z,y),
fuzzify(one, delta),

flt(fvar(z,y), fuzzify(thrd, delta))]

61

Thus the likelihood that one pixel satisfies an edge point depends on both the likelihood
that the fuzzy gradient is close to zero and the likelihood that the fuzzy local variance
is less than a threshold. The more the fuzzy gradient is near zero and the fuzzy local
variance is far less than the threshold, the more likely this pixel is an edge point. Then
fequal(fgrad(z,y), fuzzify(zero, delta)) should return a fone with less uncertainty, and
flt(fvar(z,y), fuzzify(thrd, delta)) should also return a fone with less uncertainty. There-
fore Fuzzy_edge_point(zx,y) corresponds to a fone with less uncertainty. _

If fequal(fgrad(z,y), fuzzify(zero,delta)) returns a fzero, which means fuzzy gradient

of the pixel (z,) is not close to zero with some uncertainty, and if flit(fvar(z, y), fuzzify(thrd, delta))

also returns a fzero, which means fuzzy local variance of the pixel (z,y) is not less than
a fuzzy threshold, then Fuzzy_edge_point(z,y) should return a fzero, which is the fuzzy
minimum of the two results and which shows that the pixel is not an edge point with some
uncertainty. ' '

If one of these two operations(fequal and flt) returns a fzero, and the other returns a
fone, then Fuzzy_edge_point(z,y) should return a fzero which is the fuzzy minimum of the
two results. It shows that the pixel is not an edge point with some uncertainty.

4.3.3 Results and Analysis

In order to show that with this approach we can reason about the influence of uncertainty
of input information on the final decision before the system is built, we can specify various
theorems within a goal spec and then prove them using the Specware theorem prover. As
an example consider a GOAL spec, which imports FUZZY-EDGE-POINT and introduces. a

theorem:

Theorem 4.3.1

V6,1, 8, : Unit — IntvlVI : ImageVz,y : Integer

o > 52 =)

Fuzzy — edge — point(tri — fuzzify — image(I, 6, 2,y)) >
Fuzzy — edge — point(tri — fuzzify — image(I, &, z,y)),

where 8, and &, are two different values chosen to fuzzify the input data and represent the
uncertainty levels of the input information.

This theorem says that if we take larger values of § for the step of fuzzification, then the
resulting decision about “fuzzy-edgeness” will also be more uncertain (more fuzzy). It is
natural that the more uncertain the input data the more uncertain the decision.

In the above example we have applied fuzzy information processing specifications on a
standard edge point derivation algorithm and the results show that the uncertainty of in-
put data propagates through the whole process and influences the uncertainty level of the
decision. The uncertainty of input data influences the fuzzy gradient and the fuzzy local
variance results, which in turn influence the uncertainty of the decision. So instead of giving
a crisp decision (true or false), a fuzzy decision is given: true with some uncertainty or false
with some uncertainty. The relation between the uncertainty levels in the final decision and
in the input information can be proved in this specification stage.

62

4.4 Conclusions and Future Work

In this chapter we have introduced a formal approach to characterize and manipulate uncer-
tainty in information processing systems. We chose fuzzy set theory to represent uncertainty.
We have shown how to specify basic elements of fuzzy set theory in Specware. As an exam-
ple, fuzzy information processing specifications were applied to an edge detection algorithm.
We showed how the uncertainty of input information propagates and influences the final
decision

In our project, we have specified a library of the fuzzy set theory by putting in various
specilications for fuzzy set concepts. a-cut is a powerful link between fuzzy set and crisp
set, so a-cut has been used in our specifications. We have also developed specs of the
fuzzy information processing systems. For instance, various fuzzification methods other
than triangular have been specified. Trapezoidal, Gaussian, and bell fuzzification methods
are three most popularly used. They can represent different levels and kinds of uncertainty
among input data or decision making. Fuzzy reasoning includes defining different versions
of fuzzy equal and fuzzy less than. Other defuzzification methods have also been specified.
All the specifications are listed in Appendix B of this report.

In our future work, we plan to generalize this uncertainty topic by using random set
instead of fuzzy set to characterize and manipulate uncertainty. We also plan to specify ran-
dom processing and formally introduce randomness to some typical information processing
problems.

63

Chapter 5

Wavelet-Based Features for ATR

Wavelets have been used successfully for signal compression. A signal can be represented
very concisely and with a high fidelity, by a set of wavelet coefficients. This suggests that
wavelet coefficients can efficiently represent the contents of a signal and, consequently, could
be used as features. Such features then can be used for signal classification. The quality of
classification depends on the choice of the features. Fixing the set of features in both time
and frequency domains results in the lack of invariance of the classification method with
respect to translations and scaling of signals. In this paper we propose an approach that
addresses this problem. We achieve this goal by using the following two techniques. First, our
classification method test whether a specific relation among wavelet coefficients is satisfied
by a given signal. And second, our method selects features dynamically, i.e., it searches for
features that satisfy the relation. The relations are learned from a database of pre-classified
signals. In this paper we provide the description of the relation learning approach and results
of testing the approach on a simple scenario. The results of our simulations showed that this
approach gives a higher classification accuracy than a similar approach based on a fixed set
of features.

5.1 Introduction

Wavelets have been used successfully for signal compression. In other words, a signal can
be represented very concisely and with a high fidelity, by a set of wavelet coefficients. This
suggests that wavelet coefficients can efficiently represent the contents of a signal and, conse-
quently, could be used as features. Such features then can be used for signal classification and
recognition. This approach has been investigated by many authors. The problem is, though,
which of the wavelet coefficients should be chosen as features? Some of the authors (e.g.,
Saito [34]) used an entropy based measure to select wavelet coefficients that are most useful
as features. This is a fully data-driven approach in which a database of classes of signals is
used to select the coefficients that, on the average, have the highest discrimination power.
Korona and Kokar [24, 22] used a theory-driven approach, i.e., they assumed that the fea-
tures were selected by a human expert. Although they have shown that the knowledge-driven
approach results in better features, the approach had to rely on the human-in-the-loop. Also,
the features generated by both approaches were fixed in both time and frequency domains,

64

i.e., once selected, the same coefficients were used later in the recognition process. In other
words, the recognition based upon such features lacks the property of invariance with respect
to both time and frequency. This makes both methods inappropriate for scenarios in which
signals are that need to be classified as members of the same class are shifted in the time
domain or are shifted in the frequency domain.

The main idea of the solution proposed in this paper consists of two parts. One, instead
of selecting a fixed set of wavelet coefficients for the whole set of signals, select a most
discriminant relation among a number of wavelet coefficients. Two, dynamically attempt to
select a set of coefficients such that satisfy a relation for a given class of signals. If such a
set of coefficients can be chosen, then the decision is made that the given signal is a member
of that class. Otherwise, the decision is negative. A relation is defined as a k-ary relation
among wavelet coefficients expressed as a set of k binary relations, where each such binary
relation is either “equal”, “less than” or “greater than”.

The method described in this paper can be used for deriving classification rules for various
kinds of signals. In particular, one could use the same approach to generate classification
relations for two databases of signals coming from two different sensors. The derived relations
could be either used for generating decisions, and then the decisions would need to be fused
[8, 40], or the relations could be fused resulting in a single (fused) relation, which then could
be used for classification of signals from two different sensors [22].

In the paper we compare the quality of classification by this algorithm with the classifica-
tion in which a fixed set of the Most Discriminant Wavelet Coefficients are used. Towards
this goal, we generate two databases of signals, a training database and a testing database.
We show that the misclassfication rate of our algorithm is significantly higher than for the
Most Discriminant Wavelets Coefficients.

5.2 Formulation of the Problem

The quality of feature-based recognition strongly depends on the quality of features used.
However, there is a trade off between the generality of the algorithm and the quality of
recognition. One can always select features that are best for a very narrow type of signals.
A “good” set of features, however, is such that is applicable to a wide class of signals, rather
than to a very narrow domain.

To formalize the recognition problem we assume the following scenario. First, there is a
class of signals. In this paper we consider only 1D signals s : T — V| where T is time and
V is the value set of the signal. We consider features to be collections of pairs

{<ty, f(t1) >,... < tn, f(tn) >} (5.1)

where t1,...t, are values of the signal domain for a given signal s and f(t1),..., f(t,) are
values of the feature function for the same signal s. We assume that the signals can be
classified into classes, say Ci,...,Ck by classification rules. Often classification rules are
represented as relational expressions, e.g.,

Sk((tl7f(t1) >, < tn,f(tn) >) L= f(tl) >N A f(tn) > Tn (52)

65

where S (k= 1,..., K) is the classification function for the k£ — th class and 71,...,7, are
thresholds.

In this paper we focus on the selection of features < t1, f(t1) >,... < tn, f(tn) >. In
the simplest case these features can be fixed in the time domain, i.e., the values #;,...%,
are fixed and used by the classification rules. In other words, the values of features are
measured (or computed) for the same time instances of the signal’s time coordinate. As we
mentioned earlier, this is a rather strong constraint, meaning that such a classification rule is
not invariant with respect to translations or scaling of the signal. In this paper we investigate
a possibility of relaxing such a constraint. Towards this aim, we rewrite the classification
rule of Equation 5.2 by replacing the fixed values ¢, ...,t, with the existential quantifier

St () >, <tn, flta) D) fB) 2N Af(tn) 2T (56.3)

This rule is less restrictive than the rule given by Equation 5.2 in the sense that it can
be satisfied whenever there exist the values of #j,...,t, such that satisfy the relational
expression. The rule of Equation 5.2 on the other hand, requires that this expression needs
to be satisfied for the fixed set of values ti,...,¢,. This means that some signals that would
not satisfy Equation 5.2, may satisfy Equation 5.3. On the one hand, this may have a negative
effect on the quality of classification (since it is easier now to'satisfy such a rule). It might
be so flexible that all the signals could satisfy a rule and thus the rule is not discriminative
enough. But on the other hand, it also gives more flexibility, since this kind of rule can be
used for classifying signals that are not exactly the same; signals that have some degree of
“similarity” may be assigned to the same class. In this sense, this kind of classification rules
can be invariant with respect to both translations and scalings of signals. To achieve the
high degree of discrimination power we need to search for appropriate relational expressions;
the conjunctive form like in Equation 5.2 might not be sufficient.

This formulation of the classification problem makes it more difficult to formulate clas-
sification rules. In the former formulation a classification rule could be “hand-crafted” by
selecting a set of thresholds 7i,...,7,. Various tuning algorithms could be used for this
purpose. In the formulation given by Equation 5.3, one needs to fid the right hand side of
the rule Sy that would replace the simple conjunctive form f(t;) > A... A f(t,) > 7p. In
this paper we present our initial experiments with this kind of problem. In particular, we
show experiments with deriving classification rules through training.

5.3 Classification Relations

In this section we describe the type of relational expressions that were used for classification.
For finding classification relations we use a Relation Search (RS) algorithm. The relation
is selected based upon a training database of signals. In this database, for each signal the
signal’s classification is given explicitly. The relation selected by the RS algorithm is called
Most Discriminant Relation (MDR).

The number of possible relations for a given database of signals is huge. In fact, if we
do not fix the arity of the relation, then it is even infinite. In our experiments we limited
ourselves to a subset of all possible relations. First, we considered only finite relations of

66

arity n = 5 (5-ary relations). More specifically, we focused on sets of five binary relations
among wavelet coefficients, where each binary relation was one of the following:

B={<,=,>} (5.4)

An example of such a 5-ary relation ® would be
d={<,<, > ==} (5.5)
We say that an ordered set of features < t1, f(t1) >,... < tn, f(ts) >, where ¢; <ty <t3 <
ty < ts, satisfies ® = {ry,72,73,74,75}, where r1,...,75 € B, if and only ii there exist such

values of t1,...,15 that f(tl)Tlf(tQ) and f(t2)’l”2f(t3) and f(t3)r3f(t4) and f(t4)7‘4f(t5) and
f(ts)rsf(t1). It is easy to calculate that there are 3% = 243 possiblé combinations of such
binary relations, i.e., there are 243 possible types of 5-ary relations like this.

The RS algorithm extracts the relation ® given a set of features for a pre-classified set of
signals. The relational formula described above can be used for classifying signals into two
classes - those that satisfy the relation and those that don’t. For each class of signals such
a relation can be constructed giving a method for multi-class classification.

5.3.1 Entropy based classification

The relations described above don’t have to be, and usually are not, disjoint. This means
that a signal can satisfy multiple relational formulas. In the example considered above, the
worst case would be if a signal satisfied all of the 243 formulas. We are interested in such
formulas that are most discriminant, i.e., such that give most sharp classifications. Intuitively
this means such classifications that have the least of the overlap among the various classes.
To measure the quality of a classification rule we use the main idea of the entropy based
classification, as for instance presented in a paper by Quinlan [33].

Consider a two-class classification problem, i.e., we have two classes of signals, C and Cs.
Let p denote the number of signals in class C; and let n denote the number of signals in
class C,. The information associated with this classification is given by Cluinlan [33]:

p P n n
I(n,p)=— lo - lo 5.6
(p) p+n g2p+n p+n g2;o-i—n . ()

Now consider a (less than perfect) classification rule ® that splits the set of signals into
two classes. Denote p; as the number of signals correctly classified as Cy, n; as the number
of signals from C,, but classified as Cj, ps as the number of signals correctly classified as Cs,
and n, as the number of signals from C; (incorrectly) classified as C,. Similarly as in the
Quinlan’s paper[33], we can calculate the expected information of the classification

2

pit+n
E(®)=) ——I(n;,p; 5.7
(@) =3) 67
and then the expected information gain due to this classification as
gain(®) = I(p,n) — E(®) (5.8)

Our relation selection algorithm uses these measures for selecting best relations. It compares
information gains for various relations and then selects the ore with the highest information
gain as the most discriminant relation.

67

5.4 Experimental Setup

To address the problem described above we performed the experiments as shown in Figure
5.1. First of all, we prepared two databases of signals, a learning database and a testing
database. The signals in the two databases have been transformed into the wavelet domain
by applying Discrete Wavelet Packet Decomposition (DWPD) (7, 14]. In the next step, the
Most Discriminant Bases (MDBs) were selected, one for the learning database and one for
the training database, using the Best Discriminant Basis Algorithm (BDBA) as described
in the previously referred papers[7, 34]. After that, all the signals were represented in the
selected MDBs. At this point we had as many coefficients as samples in each signal. Th
next step is to select a relation that would be used for classification. Since the goal was to
assess our proposed approach against an approach in which a fixed set of features is used,
we had to pursue two paths. In one path (the left most branch in Figure 5.1) we applied our
relation selection algorithm to all of the coefficients of the MDB (for all signals). In the other
path, we selected only five most discriminant elements of the MDB and used the coefficients
of these MDB elements in the search for the most discriminant relation. The reason for this
was to find out what is the gain in the recognition accuracy that can be attributed to the
use of the relational formulation given by Equation 5.3 with respect to the formulation given
by Equation 5.2. The result of the two left branches shown in Figure 5.1 were two relations.
In the next step, these two relations were applied to classify the test database.

5.5 Simulations

To obtain an initial assessment of the usability of this approach we developed two databases
of signals, a training database and a testing database (see Figure 5.1). We generated 100
signals for the learning database and 600 signals for the training database. The signals were
of two different classes, rectangular and triangular. In each of the databases there were 50%
of signals from each of the two classes. Examples of triangular signals from the learning
database are shown in Figure 5.2. As can be seen from this figure, the shapes of the signals
were varied. The length of the triangle base, the location of the base in the time coordinate,
the location of the apex of the triangle, both the height and the horizontal location with
respect to the base, were all varied randomly. Similarly, for the rectangular signals, the size
of the rectangle base, its location in the time coordinate, as well as the height, were varied
randomly.

One of our goals was to test the sensitivity of this method to noise. Towards this aim,
our simulated signals contained various levels of Sensor to Noise Ratio (SNR). We generated
signals in such a way so that the distribution of SNR was uniform. The distribution is shown
in Figure 5.3.

5.6 Results

To assess the quality of classification we used the measure of classification accuracy, 9,
defined as a percentage of correct decisions as compared to all the decisions made for the

68

test database.
P

= 1 :
b= 5 10 (5.9)

We have run many simulation experiments, each addressed at a specific research question
related to the method proposed in this paper. As we said before, our main goal was to assess
the usability of the approach proposed in this paper. Towards this aim, we compared the
classification accuracy of this method against the accuracy of recognition of a system in which
the relations were learned, similarly as in the proposed system, but where the set of features
was fixed. As shown in the middle branch of Figure 5.1, we apply the Best Discriminant
Basis Algorithm (BDBA) [7, 34] to select a colleciion of features that are best with respect
to the entropy based measure used by the BDBA. Then we select the best relation using our
approach. Finally, we classify the signals using both relations, one selected by our approach,
and the other that used our approach to the set of features selected by the BDBA. The results
of the classification (the classification accuracy) are plotted in Figure 5.4. The dashed line
shows the classification accuracy of our method (using the MDR, i.e., most discriminant
relations, it is marked as RS Relation in the figure) and the dashed-and-dotted line shows
the classification accuracy of the relation among only the most discriminant features selected
by the BDBA (in the figure it is called MDB Relation).

5.7 Conclusions and Further Research

Our main goal in this paper was to analyze the usability of a different approach to the
classification of signals. This approach uses relations for its decisions, where the relations
are learned, rather than defined. The distinguishing characteristic of the formulation of the
classification problem described in this paper is the fact that we do not use any fixed set
of features, but instead, the systems attempts to find features in the signal that satisfy a
given relation. If such a set is found, the decision is positive, i.e., the signal can be classified
as being an element of the class associated with *“lie relation. Otherwise, it is a negative
decision.

To single out the impact of this approach on the quality of classification we developed
two kinds of simulations, one according to our proposed approach, and another one serving
as a benchmark. The benchmark simulation also uses relations for decision making, but
unlike the approach presented in this paper, it first selects a fixed (such that gives best
discrimination power) set of features and then finds a best relation for this set of features.
The recognition accuracy based on a fixed set of features does not seem to be a good choice
for the scenarios similar to the one presented in this paper due to the fact that the signals
in one class were similar in terms of their shape, but were quite different if taken simply
as functions of time. For instance, the triangles had their base varying in both size and
location, the apex of the triangle varied in both the height and the location with respect
to the base. For rectangular signals, the base size and position, as well as the height, were
varied.

As can be seen from Figure 5.4, the classification accuracy for the method proposed in
this paper is significantly better than for the benchmark approach. It is uniformly better
for all levels of SNR tested in our experiments. We attribute this improvement to the use of

69

relations with variable features, as opposed to using fixed sets of features.

While this tells us that the approach proposed in this paper is worth further study, it also
requires more work to make it applicable in practice. First of all, the algorithms investigated
in this study exhibit a high level of sensitivity to noise. This could be expected since the
algorithms did not use any noise filtering or smoothing, but they rather operated on pure
signals. This can be improved using standard filtering and smoothing techniques.

Another direction that should be investigated deeper is the choice of the learning and
classification algorithms. In this study, we used exhaustive, non-incremental algorithms. In
other words, we searched the whole space of 5-ary relations on the whole learning data-
base. There are various learning algorithms that could give better performance in both time
efficiency and classification accuracy. ‘

Additionally, we considered only 5-ary relations, where the magic number “5” was selected
arbitrarily. This could be a parameter in the relation learning algorithm and thus it would
be selected by the algorithm dynamically, rather than fixed at the outset.

70

Build Testing
DB

! Build Learning
DB

Testing Data Base

Leaming Data Base (TDB)

(LDB)

DWPD of signals

DWPD of signals

Select MDB

Select MDB

Decompose signals in MDB Decompose signals in MDB

LDB Decomposed in the MDB TDB Decomposed in the MDB

Relation

Relation

Selection Selection
(on all of MDB} {most

discriminant) §

N

Best Relation on

Best Relation
most discriminant

on all of ;DB

Classification

Classification

Analyze Results '

Figure 5.1: Experiments

71

10

40

20

2 2 4 4
1 i hwdww’hv 1 2 q 2
0 0 0 0
0 100 200 0 100 200 O 100 200 O 100 200 O 100 200
4 10 10 10
p\ ZLNPNMMMH 5 ﬁ 5 h 5
0 0 0 0
0 100 200 O 100 200 O 100 200 O 100 200 O 100 200
10 20 20 10
N 5 g ﬁ 10 1o‘d//\\um 5
0 0 0
0 100 200 0 100 200 O 100 200 O 100 200 O 100 200
20 20 20 20
!S 10 ff 10 1oumJ/f\\\ 10
0 0 0 0
0 100 209 0 100 200 O 100 200 O 100 200 O 100 200
4 20 40 40
2M#Arﬂ\\¥ 10 20 20
0 0l 0 0
0 100 200 0 100 200 O 100 200 0 100 200 O 100 200
Signals

Figure 5.2: Examples of (Triangular) Signals

72

35

30

N N
o (4}

Signal-To-Noise Ratio
o

10

SNR Distribution in Testing Database

T T T

1 1 1

T T

100 200 300
Signal

Figure 5.3: Distribution of SNR for Signals

73

400 500 600

in the Learning Database

Classification accuracy (%)

100 T T T T 7 T 7
: : : : : /
/ __/ Y
QO - e ,_ _._._.l /______/_
: _.n : ,
: 1 : /
80._ /___. p T -
Sy : /
S : /
70 L —
3l 2
e /:/
60k - ——- LGN A PO e _
! /
s /
BOI- /ool e -
/
/
/
BOF - e g —
/
/
30.. Jrrrliteseec el -
’
. . / . .
b e e LS PR SV J AU I
20 7 ; ; ; ~ -~ MDB Relation
//: : : : - — - RS Relation
10_).,.__.1 P e -
o 1 1 1 1 i
5 10 15 20 25 30 35

Signal to Noise Ratio

Figure 5.4: Classification Accuracy for Various Levels of Noise (SNR)

74

Chapter 6

Goal-Driven Autonomous Decision
Fusion

6.1 Introduction

This section addresses the issue of decision fusion when two (or more) sensors and the fusion
center have a common language to represent queries and decisions, while each of the sensors
has its own interpretation of the formulas of the language. Fusion is achieved through the
model-theoretic operation of direct product of models. Since not all (most) formulas are
not preserved under the product we need an decision procedure that tell us how to combine
decisions from particular sensors into one fused decision. Towards this aim the notion of
Galvin system is used. The operation of a decision procedure based on this approach is
explained on simple examples. The validity of the solution is formally defined and proved in
an appropriate theorem. The main advantages of the approach proposed in this section are
that the decision mechanism is generic, i.e., it can check the validity of any goal formula,
and that it is provably correct.

We consider a case of decision fusion in which all sensors (two or more) derive decisions
that are expressed in a language common to all the sensors. Even though it may seem like
a very simple case, it is not quite so, because each of the sensors has its own interpretation
of the terms of the language. In other words, for each sensor, there is a (different) model
associated with the language. Consequently, the process of fusion (cf. [23]) requires that
these different interpretations be taken into account when decisions from different sensors
are fused.

We address this problem by fusing the interpretation structures (models) rather than
just the decisions. In this section we use the operation of product to combine structures
[6]. Unfortunately, in such a case, even if both sensors derive the same decision, it is not
necessarily preserved in the product of two models. For instance, the formula

a(z,y)=z-y=0=> (z2=0vVy=0)

most typically does not hold in the product. To be more specific, consider two structures
A and B such that A = B = R, i.e., both are real numbers with two operations - addition
and multiplication under usual interpretation. The formula a(z,y) holds in both A and B,

75

since either z or y must be 0 in order for z - y to be zero. We can say then that A = « and
B k= a. In the product A x B, however this is not the case. Note first that in the direct
product A x B, the zero element, 0, is represented by the pair 0(0,0) and if z = (z;, ;) and
y = (y1, o) are any elements of A x B we have z-y = ((z1,72) - (¥1, Y2)) = (Z1 - Y1, T2 - Y2)-
It is easy to see that for £ = (0,3) and y = (5,0) we have z -y = (0,0)4, but neither z or y
are equal 0.

Horn formulas [15], on the other hand, are preserved under products. Even more, Keisler
[17] proved that any formula that is preserved under reduced products is equivalent to a
Horn formula. Some applications of Horn formulas can be found in (28, 39, 31].

Since, as we stated above, we are interested in fusion by products, our goal in this project
" is to deal with more general types of formulas, not necessarily Horn formulas, and thus we
need a decision procedure which will allow us to decide when a given formula is preserved in
the product of two models. Moreover, our objective is to show how such a decision procedure
can be derived automatically, i.e., how to construct autonomous fusion systems of this sort,
given that the system knows the language in which decisions are expressed.

6.2 Problem Formulation

We are addressing here the problem of decision fusion. We assume that the goal of the fusion
system is to derive a decision ¢ based upon decisions ¢, ..., ¥, obtained from n sensors
(n decisions based on inputs from sensors). It is assumed that all sensors have the same
language and that they interpret information in structures of the same kind of structure. In
our example we assume even more - that carriers of models are the same, although in general
it is not important. However, the semantical interpretations of the information can be very
different. Our goal is to construct a decision procedure which will assert a formula whenever
all the sensors report that some witness formulas holds.

We envision a hierarchical scenario in which there is a central fusion unit that collects
inputs from all subordinate units (we call them sensors) and thex the central unit makes a
decision. The central unit can send various questions (queries) t< the sensors. It is possible
since both the central unit and the sensors speak the same language.

To better explain the problem we are addressing, we consider the following example sce-
nario (see Figure 6.1). In this scenario, the goal is to recognize whether a detected object
(house) has a gable roof oriented in the East-West direction. Two sensors, N and W (north
and west) provide reports to the fusion unit. Suppose one of the terms in the language is
GableEW (z), which is one of the goal formulas of the system. The fusion center, F', can
then send the query to the two sensors, W and N. Both sensors will interpret this formula
in their own manner. Sensor W will reply “yes” (or “true”) when it sees a triangle. Sensor
N, on the other hand, will reply “yes” when it sees a rectangle. The fusion center, F', will
conclude GableEW(roof) holds if both sensors say so.

Notice that, as we mentioned above, in a general case such a decision procedure is not
correct. Our goal in this section is to propose a solution to this problem. More specifically,
we will show how to decide about the truthfulness of such formulas. Since the procedure will
allow for automatic answering of such queries, we call this procedure an autonomous fusion
system. ~

76

Figure 6.1: Decision Fusion Scenario

6.3 Outline of the Solution

To construct an autonomous fusion system, we use the notion of Galvin system (cf. [11, 39]).
In the framework of Galvin systems, we show an algorithm for deriving the goal decision ¢.
In the first step, for any given goal formula ¢, our system constructs a set of formulas S and
an operation IT : S* — S. The operation II asserts which of the goal formulas hold in the
fused structure (in the product), given that formulas ¢, ...y, hold for each of the sensors.
The algorithm then computes a set T C S, such that the goal formula ¢ is equivalent
to the disjunction of all the formulas from T. In the next step, the algorithm computes
@ = H(g1,...,vs) and checks whether this formula is in 7. If it is, then the decision ¢
holds, otherwise it does not. It is clear that since ¢ is a disjunct in the sev 7, ¢ implies the
goal formula ¢. '

Popular wisdom has it that when two sensors derive the same decision, then the decision
must hold in reality. In this section we show how to rationalize such a rule, i.e., when
to accept such a rule in decision fusion and when not to. We have already showed simple
examples of decision fusion for both when this popular wisdom rule should be used and when
it should not be used. In the following we show how the Galvin system approach works on
the scenario of Figure 6.1.

First of all, the fusion center F must select a query, or a goal formula. It is obviously
related to its higher-level goals. In the next step it analyzes the syntax of the formula. Among
others, it identifies atomic formulas within the goal formula. (Note, for now we are dealing
only with open formulas, i.e., formulas without quantifiers.) In the case of p = GableEW,
the goal formula consists of one atom. Based upon this analysis, F' constructs the set S. In
this case S = {GableEW, ~GableEW}. In the case of open formulas, S contains all atomic
formulas, all conjunctions, and their negations. In the next step, F' constructs the mapping
II. In this example it is defined as:

(e,) =

77

(-, p) = My,) = (-, ~p) = ~p
The set T in this case consists of only one element, T = {GableEW}. To make a specific
decision, the system takes the answers to the query, computes the value of II and checks
whether the result is in 7. In this example, the only case that a result is in 7" is when both
sensors say “yes”.

6.4 Proof of the Solution

In this section we present a formal definition of the Galvin information fusion system [11, 39
that was informally described above. We also provide a proof that a decision can be reached
for any goal formula.

Definition 6.4.1 A Galvin Information Fusion System IFS (with variables vy,...v,) is a
pair (S, IT), where:

(i) S is a finite set of formulas with variables in {vi,...vn}.

(i) Tl is a commutative and associative operation on S (i.e. (S,II) is a commutative

semigroup).

(iii) For any structure 2 and ay, . ..a, € A, there is exactly one formula o € S such that
A = alay, ... an].

(iv) For any structures % and B and any elements ay,...an € A and by,...b, € B
if for some o, 3 € S we have A k= afay,...an] and B Blb1,-..bs] then A x B |

I(a, B)[{a1, b1),- - - (an, ba)].

Theorem 6.4.2 — For any goal formula ¢ = p(z,...2,) we can effectively construct a
Galvin IFS (S, 1) with variables z1, ...z, and a set T C S such that VT < p isa tautology.

Proof: We will proceed by induction. Let ¢ be an open formula and ¢, ..., ¢x be all
atomic formulas occurring in ¢. Let S consists of 2F formulas of the form 91 A ... A,
where each v; is either ¢; or ;. Suppose a = ¥} A... A, B =9" N... ANy, Take
(a, B) = Y1 A... AP where 9); = @; if ¥ = 1] = p; or ¢; = —¢p; otherwise. Now II satisfies
all of our requirements and it is easy to see that (S, II) is then a Galvin IFS and we can find
the set T C S such that VT < ¢ is a tautology.

Let us remark now that, if (S, II) and T satisfy our theorem for ¢, then (S,1I) and S - T
satisfy our theorem for —p.

Let (S;,10;) and T; satisfy the theorem for ¢; and let (S, Il2) and T do the same for
¢o. Let us define S = {aAB:a€ Sand e S}, T={anNB:a€Thorp € T},
(o) A By, g A B2) = Ii(a1, a2) ATIo(B1, B2). Then it is easy to check that (S,I1) and T
satisfy the theorem for ¢; V ¢,.

Finally let ¢ = 3o, and let (S, II;) and T} satisfy the theorem for ;. We will find
(S,I1) and T for ¢. Let S = {ax : X € S1} where ax = A{Izoy: 7 € XYy AN{—3zoy:v €
S; — X}. Then it is easy to see that S satisfies the conditions (i) and (iii).

78

Let I(ax, ay) = oz, where Z = {II;(v,6) : v € X and § € Y'}. Obviously I satisfies (ii).
We will show that II satisfies (iv).

Indeed, suppose 2 = ax[ai,...,an] and B = ay(by,..., bs]. To prove (iv), we will show
that for any 8 € Sy, A x B = (3zoB)[{a1, b1), - - - (an, ba)] iff B € Z.

Let B € Z, then there is v € X and & € Y such that 3 = II,(,). Moreover since 2 =
axlay, ..., an), we have % |= (3zod)[ay, . . .,a,] and in the same way B = (3zod)[by, . - -, bn).
Thus there are ag € A and by € B such that 2 = d[ao,...,a,] and B = d[bo, ..., ba).
Consequently A x B & II,(7, 8)[(ao, bo), - - - , (@n, bn)]. but 8 = II1(7,6), whence A x B |=
B[{ao, bo), - - -, {an, b)) and A x B k= (FzoB)[(a1, 1), - - y {an, bl

Conversely, let A x B = (3zoB)[(a1,b1), - - -+ (@n, 0n)]. Then there is {ag, bo) € A X B such
that %A x B = B[(ao, bo), - - -, {(an, ba)]. Let v € S; be such that 2A E v[ao,-..a,) and § € S,
be such that B |= 8[by, . . ., bs). Then & |= (3zo7)[ay, - - ., a,] and by definition of ax, vy € X.
In the same way & € Y. Moreover I1,(v,8) = B3, thus 8 € Z and II satisfies (iv).

This completes the proof.

6.5 Conclusions

In this section we addressed the issue of decision fusion. We assumed the situation in
which various sensors and a central decision fusion system share a common language. More
precisely, the syntax of the language is common to all parties. But the interpretation of
particular symbols is different for each sensor. The fusion process is based on the model-
theoretic operation of direct product of models. Accordingly, the fusion process takes all
the decisions from the particular sensors and then derives a positive decision only if all the
sensors agree. In this scenario, the fusion center must be able to send queries to the sensors.
This query is dependent on its goal represented by a goal formula. In case of a complex
query, the fusion center analyzes the structure of the goal formula and derives a decision
derivation procedure. This decision process is based *:pon the notion of Galvin system. In
this section we showed simple examples of how such a system works. We also showed the
formal derivation of the correctness of such procedure.

Decision fusion is important in many applications. The scenario in which partlcular sensors
have their own interpretations is quite typical. For instance, a radar “sees” an object in a
different way than a vision camera, an infrared camera or an ultrasound. All of these
sensors, however, are used in target detection. Decisions from such sensors need to be fused.
Typically, fusion algorithms are constructed around a specific set of goal formulas. If an
additional formula needs to be added, the system must be redesigned and re-implemented.
The approach presented in this section resolves such a problem by proposing a generic
decision mechanism that can check the validity of any goal formula. The main advantage of
this mechanism is that, unlike heuristic rule-based approaches, it is provably correct.

79

Bibliography

1]
2]
[3]

[4]
[5]

[7]

8]
[9]

[10]

[11]
[12]

[13]

[14]

Specware: Language manual, version 2.0.3. Technical report, Kestrel Institute, 1998.
Specware: User guide, version 2.0.3. Technical report, Kestrel Institute, 1998.

Omg unified modeling language specification, version 1.3. Technical report, Object
Management Group, 1999.

G. A. Baxes. Digital Image Processing. John Wiley & Sons, Inc., 1994.

M. D. Bedworth and J. C. O’Brien. Pittfalls in data fusion (and how to avoid them).
In Proceedings of the Second International Conference on Information Fusion, Vol. 1,
pages 437-444, 1999.

C. C. Chang and H. J. Keisler. Model Theory. North Holland, Amsterdam, New York,
Oxford, Tokyo, 1992.

R. Coifman, R. and M. V. Wickerhauser. Entropy-based algorithms for best basis
selection. IEEE Transactions on Information Theory, 38, no.2:713-718, 1992.

B. V. Dasarathy. Decision Fusion. IEEE Computer Society Press, 1994.

B. V. Dasarathy. Sensor fusion potential exploitation - innovative architectures and
illustrative applications. Proceedings of IEEFE, 85, No.1:24-38, 1997.

S. A. DeLoach and M. M. Kokar. Category theory approach to fusion of wavelet-based
features. In Proceedings of the Second International Conference on Information Fusion,
Vol. 1, pages 117-124, 1999.

F. Galvin. Horn sentences. Annals of Mathematical Logic, 1:389-422, 1970.

H. Gao, M. M. Kokar, and J. Weyman. An approach to automation of fusion using
specware. In Proceedings of the Second International Conference on Information Fusion,
Vol. 1, pages 109-116, 1999.

D. L. Hall. Mathematical Techniques in Multisensor Data Fusion. Artech House, Boston
- London, 1992. :

L. Hong. Multiresolutional filtering using wavelet transform. IEEE Transactions on
Aerospace and Electronic Systems; 29(4):1244-1251, 1993.

80

[15] A. Horn. On sentences which are true of direct unions of algebras. Journal of Symbolic
Logic, 16:14-21, 1951.

[16] J. R. Jang and C. Sun. Neuro-fuzzy modeling and control. JEEE Transactions, 1995.

[17] H. J. Keisler. Reduced products and horn classes. Trans. Amer. Math. Soc. Ser.2,
81:307-328, 1965.

[18] G. J. Klir. On the alleged superiority of probabilistic representation of uncertainty.
IEEFE Transactions on Fuzzy Systems, 2, No.1, 1994.

[19] G. J. Klir and B. Yuan. Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice
Hall PTR, 1995.

[20] G. J. Klir and B. Yuan. Fuzzy Set Theory Foundations and Applications. Prentice Hall
PTR, 1997. A

[21] M. M. Kokar, M. D. Bedworth, and K. B. Frankel. A reference model for data fusion
systems. In Sensor Fusion: Architectures, Algorithms, and Applications IV, pages 191-
202. SPIE, 2000. ~

[22] M. M. Kokar and Z. Korona. A formal approach to the design of feature-based multi-
sensor recognition systems. International Journal of Information Fusion (in print, 2001.

[23] M. M. Kokar, J. A. Tomasik, and J. Weyman. A formal approach to information fusion.
In Proceedings of the Second International Conference on Information Fusion, Vol. I,
pages 133-140, 1999.

[24] Z. Korona and M. M. Kokar. Lung sound recognition using model-theory based feature
selection. Applied Signal Processing, 5:152-169, 1998.

[25] J. Li, M. M. Kokar, and J Weyman. Incorporating uncertainty into the formal devel-
opment of the fusion operator. In Proceedings of the Second International Conference
on Information Fusion, Vol. 1, pages 125-132, 1999.

[26] J. S. Lim. Two-Dimensional Signal and Image Processing. Prentice Hall, Inc., 1990.

[27] R. C. Luo and M. G. Kay. Multisensor integration and fusion in intelligent systems.
IEEE Transactions on Systems, Man and Cybernetics, 19-5:901-931, 1989.

[28] J. A. Makovsky. Why horn formulas matter in computer science: Initial structure and
generic examples. In CAAP’85 Arbres en Algebre et Programmation 10, pages 374-385,
1985.

[29] J.M. Manyika and H.F. Durrant-White. An information-theoretic approach to manage-
ment in decentralized data fusion. In Sensor Fusion V, volume 1828, pages 202-213.
SPIE, 1992.

81

[30] M. Markin, C. Harris, M. Bernhardt, J. Austin, M. Bedworth, P. Greenway, R. John-
ston, A. Little, and D. Lowe. Technology foresight on data fusion and data processing.
Publication of the Royal Aeronautical Society, 1997.

[31] E. A. Palyutin, J. Saffe, and S. S. Starchenko. Models of superstable horn theories.
Algebra @ Logika, 24:278-326, 1985.

[32] B. C. Pierce. Basic Category Theory for Computer Scientists. MIT Press, 1991.
[33] R. J. Quinlan. Induction of decision trees. Machine Learning, 1:81-106, 1986.

[34] N. Saito. Local Feature Extraction and Its Applications Using a Library of Bases. PhD
thesis, Yale University, 1994.

[35] A. Shulsky. Silent Warfare: Understanding the World of Intelligence. Brassey’s, 1993.

[36] Y. V. Srinivas. Category theory: Definitions and examples. Technical Report TR-90-14,
University of California at Irvine, 1990.

[37] A.N. Steinberg, C. L. Bowman, and F. E. White. Revisions to the jdl data fusion model.
In Proceedings of the SPIE. Sensor Fusion: Architectures, Algorithms and Applications,
pages 430-441. SPIE, 1999.

[38] S. C. A. Thomopoulos. Dignet: a self-organizing neural network for automatic pattern
recognition, classification, and data fusion. In Sensor Fusion IV: Control Paradigms
and Data Structures, volume 1611, pages 478-495. SPIE, 1992.

[39] J. Tomasik. On products of neat structures. Annals of Mathematical Logic, 36:12-16,
1976.

[40] P. K. Varshney. Distributed Detection and Data Fusion. Springer-Verlag, 1996.

[41] J. M. Wing. A specifier’s introduction to formal methods. IEEE Computer, 9:8-24,
1990.

[42] L. A. Zadeh. Fuzzy logic. Computer, 21, No. 4:83-93, 1988.

82

Chapter 7

Supplementary Information

7.1 Relevance to the Air Force

The goals of this research are fully within the scope of the AF mission: target detection and
recognition. The goal of target detection and recognition is a very difficult task. Currently,
image analysts can often detect and identify an enemy aircraft in the imagery, while none
of the ATR programs can. This is due to the knowledge that the analysts possess and the
ATR programs lack. This research effort’s goal is to fill this gap and, ultimately, develop
ATR programs that will be able to incorporate background knowledge into their processing,
whenever such knowledge becomes available. The same kind of capabilities is extremely im-.
portant for many civilian applications. These may include facility surveillance systems, drug
trafficking counter measures, credit card identification, detection of intruders in computer
communication networks, and many others.

7.2 Personnel Supported

The p.vject supported three faculty and four students.

1. Professor Mieczyslaw Kokar (PI)
2. Professor Jerzy Weyman (Co-PI)
3. Professor Jerzy Tomasik (Co-PI)
4. Jingsong Li (M.S. student)

5. Hongge Gao (Ph.D. student)
Marek Malczewski (M.S. student)
Jiao Wang (Ph.D. student)

® N>

Gulsah Cakiroglou (M.S. student)

83

7.3 Publications That Resulted From This Project

[1] M. M. Kokar, M. D. Bedworth, and K. B. Frankel. A reference model for data fusion
systems. In Sensor Fusion: Architectures, Algorithms, and Applications IV, Proceedings of
the International Conference -AeroSense’2000, vol. 4051, pages 191-202, SPIE, 2000.

[2] J. Tomasik. Discrete dynamic approach to multisensory multitrack fusion. In Pro-
ceedings of the International Conference -AeroSense’2000: Sensor Fusion: Architectures,
Algorithms, and Applications IV, B. V. Dasarathy (Ed.), vol. 4051, pp. 369-379, 2000.

[3]. M. M. Kokar, J. Weyman and J. A. Tomasik. A Formal Approach to Information
Fusion. Information Fusion: An International Journal on Multi-Sensor, Multi-Source Infor-
mation Fusion, (submitted), 2000.

- [4] M. M. Kokar and Z. Korona. A Formal Approach to the Design of Feature-Based Multi-
Sensor Recognition Systems. Information Fusion: An International Journal on Multi-Sensor,
Multi-Source Information Fusion, (accepted for publication), 2000.

[5] J. Li, M. M. Kokar, J. Weyman and J. Tomasik. Formal Specification of Fuzzy Infor-
mation Fusion Systems. IEEE Transactions on Systems, Man and Cybernetics, (submitted),
2000.

[6] M. M. Kokar and M. K. Malczewski. Relations among wavelet coefficients and features
for ATR. In Sensor Fusion: Architectures, Algorithms, and Applications V, Proceedings of
the International Conference -AeroSense’2001, SPIE, 2000.

[7] DeLoach, S. A. and Kokar, M.. Category Theory Approach to Fusion of Wavelet-Based
Features. Proceedings of the Second International Conference on Information Fusion, Vol.
1, pages 117-124, 1999.

[8] Kokar, M. M. and Tomasik, J. A. and Weyman, J., A Formal Approach to Informatlon
Fusion, Proceedings of the Second International Conference on Information Fusion, Vol. 1,
pages 133-140, 1999.

[9] Tomasik, J. A. and Kokar, M. M., Towards a Goal-Driven Autonomous Fusion System,
Proceedings of the Second Internatlonal Conference on Information Fusion, Vol. 1, pages
149-153, 1999.

[10] Gao, H. and Kokar, M. M. and Weyman, J., An Approach to Automation of Fusion
Using Specware, Proceedings of the Second International Conference on Information Fusion,
Vol. 1, pages 109-116, 1999.

[11] Li, J. and Kokar, M. M. and Weyman, J., Incorporating Uncertainty into the Formal
Development of the Fusion Operator, Proceedings of the Second International Conference
on Information Fusion, Vol. 1, pages 125-132, 1999.

7.4 Interactions/Transitions

The results of this research have been presented at the SPIE conference AeroSense 2000,
Sensor Fusion: Architectures, Algorithms, and Applications IV, Orlando, Florida, April
2000. Another paper will be presented at the SPIE conference in April of 2001. One
paper has already been accepted for publication and will appear in International Journal
of Information Fusion in 2001.

84

The PI of this project, Mieczyslaw Kokar, gave two talks on the topics covered by this
project at the Air Force Research Laboratory, Rome, NY in 1999 and in 2000.

Air Force Research Laboratory, Rome, Information Systems Design Concepts (IFTD).
Contacts: John Lemner and Robert Paragi. Both John Lemner and Robert Paragi have
interest in the results of our research. We inform them of our progress. '

85

Chapter 8
Appendix A: Code for Chapter 3

8.1 Rectangle/Triangle Recognition Problem
't in-package("SPEC")
! in-grammar(’ispec-grammar)
%% created by Hongge Gao on 04/19/00
spec XX is
sort Xx
end-spec
spec YY is
sort Yy
end-spec
spec RAN-SENSOR is
sorts X1, Range
%% mr - is maximal range
const mr : Range
%h f_r - measurement function; returns range for given x
op f_r: X1 -> Range
%k 0_r? - relation, indicates whether an object is in the sensor’s way
op O_r7: X1, Range -> Boolean

%h overloading functions
op 1t : Range, Range -> Boolean

86

%% object exists only if range is less than max range
‘ axiom object-exists is
0_r7(x,f_r(x)) <=> 1t(f_r(x),mr)

%% otherwise, there is no object
axiom no-object is
“0_r?(x,f_r(x)) <=> (f_r(x) = mr)

end-spec

spec INT-SENSOR is

sorts X2, Intensity
%% ishd - value of intensity signal that indicates shadow

const ishd : Intensity

%% f_i - measurement function; returns intensity .for given x

op f_i: X2 -> Intensity

%% S_i? - one-placed relation that indicates where the shadow is
op S_i?: X2 -> Boolean

axiom shadow-point is
(f_i(x) = ishd) => S_i?(x)

end-spec

spec WORLD is

%% TRIANGLE,RECTANGLE,TSHADOW are propositions
%% TRIANGLE - triangle, RECTANGLE - rectangle - objects in our world;

%% one at a time
%% TSHADOW - shadow of a triangle

sorts X, Y, Target

const TRIANGLE : Target
const RECTANGLE : Target
const EMPTY : Target

op what : X, Y -> Target
op Tshadow? : X -> Boolean

%% world theories

87

axiom three-possibilities is
what(x,y) = TRIANGLE or what(x,y) = RECTANGLE or what(x,y) = EMPTY
axiom only-one-object is
~ (what(x,y) = TRIANGLE & what(x,y) = RECTANGLE)
axiom not-tr-shadow-is-rectangle is
(what (x,y) = TRIANGLE or what(x,y) = RECTANGLE) & ~Tshadow?(x)
=> what(x,y) = RECTANGLE

end-spec
diagram PROB-DIAGRAM is
nodes RAN-SENSOR, INT-SENSOR, WORLD, XX, YY
arcs XX -> WORLD : { Xx -> X},
XX -> RAN-SENSOR : { Xx -> X1},
XX ~> INT-SENSOR : { Xx -> X2},
YY -> RAN-SENSOR : { Yy -> Range},
YY -> WORLD : { Yy —> Y}
end-diagram
spec PROB is
colimit of PROB-DIAGRAM
spec PRE-GOAL is
import
translate
PROB
by { X1 -> X, Range -> Y}
opd: (X >7Y), (X -> Intensity) —> (X, Y -> Target)
end-spec
diagram GOAL-DIAGRAM is
nodes TRIV, SET, PRE-GOAL
arcs TRIV -> PRE-GOAL : { E -> Target 1},
TRIV -> SET : { E > E }

end-diagram

spec GOAL is

88

import
translate
colimit of GOAL-DIAGRAM
by { Set -> Set-of-Target,
empty-set -> empty-set-of-target,
in -> in-set-of-target,
E -> Target}

op dbar : (X -> Y), (X -> Intemsity) —> (X,Yk—> Set-of-Target)
end-spec
spec GOAL-WITH-ASSOC is

import GOAL

%% association functions

const al : X
const a2 : X

%% overloading functions
op minus : X, X -> X

op fip : X > Y
definition of flp is

axiom flp(x) = f_r(minus(x,al))
end-definition

op f2p : X -> Intensity
definition of f2p is
axiom f2p(x) = f_i(minus(x,a2))

end-definition

end-spec

89

8.2 Geometry Ontology
1! in-package("SPEC")

I'! in-grammar (’ispec-grammar)

spec POINT is

import REAL

sorts Point

const origin : Point

op make-point : Real, Real -> Point

op x-coord : Point -> Real
op y-coord : Point -> Real

axiom x-coord(make-point(x,y)) = x
axiom y-coord(make-point(x,y)) =y
axiom make-point(x-coord(p),y-coord(p)) = p

f

axiom x-coord(origin) = zero
axiom y-coord(origin) = zero

%% projection from a point to x coordinate with angle a is x-y/tan(a)
op x-p : Point, Real -> Real
definition of x-p is

axiom x-p(p,a) = minus(x-coord(p),div(y-coord(p),tan(a)))
end-definition

%% distance between two points
op pt-dis : Point, Point -> Real
definition of pt-dis is
axiom pt-dis(pl, p2) = sqrt(plus(square(minus (x-coord(pl),x-coord(p2))),
square (minus(y-coord(pl1),y-coord(p2)))))
end-definition
end-spec

spec LINE is

import POINT

90

sort Line
sort CformOfLine

const x-axis : Line
const y-axis : Line

sort-axiom Line = (Real, Real, Real) | line-equation?
sort-axiom CformOfLine = (Real, Real, Real) | canonical-form?

op line-equation? : (Real, Real, Real) -> Boolean
definition of line-equation? is

axiom line-equation?((a,b,c)) <=> not(a = zero & b = zero)
end-definition

op canonical-form? : (Real, Real, Real) -> Boolean
definition of canonical-form? is
axiom canonical-form?7((a,b,c)) <=>
(b=one) or (a=one&b= zero)
end-definition

%% a straight line is of the form ax + by + ¢ = 0
op make-line : Real, Real, Real -> Line

%% the canonical form of a line
%% if b = 0, the canonical form is : x + c/a = 0 (1,0, c/a)
%% if b != 0, the canonical form is : ax/b+y+c/b=0 (a/b,1,c/b)
op cl-form : Line -> CformOfLine
definition of cl-form is
axiom ~(b-par(ln) = zery) =>
relax(canonical-form?) (cl-form(1ln)) =
(div(a-par(1n),b-par(in)), one, div(c-par(ln),b-par(ln)))
axiom (b-par(ln) = zero & ~(a-par(ln) = zero)) =>
relax(canonical-form?) (cl-form(ln)) =
(one, zero, div(c-par(ln), a-par(ln)))
end-definition :

op line-form : CformOfLine, Nonzero -> Line
definition of line-form is
axiom line-form(cl,r) =
make-line (times(relax(nonzero?) (r),project (1) (relax(canonical-form?)(cl))),
times(relax(nonzero?) (r) ,project(2) (relax(canonical-form?) (cl))),
times (relax(nonzero?) (r),project(3) (relax(canonical-form?)(c1))))
end-definition '

%% equivalence relation between lines

91

op same-line? : Line, Line -> Boolean
definition of same-line? is

axiom same-line?(1n1,1n2) <=> cl-form(inl) = cl-form(1n2)
end-definition

%% from line to a, b, c parameters
op a-par : Line -> Real
definition of a-par is _
axiom a-par(ln) = project(1)(relax(line-equation?)(1n))
end-definition :

op b-par : Line -> Real
definition of b-par is

axiom b-par(ln) = project(2)(relax(line-equation?)(1ln))
end-definition

op c-par : Line -> Real
definition of c-par is ‘

axiom c-par(ln) = project(3)(relax(line-equation?)(1n))
end-definition

axiom a-par(x-axis) = zero

axiom c-par(x-axis) = zero
axiom b-par(y-axis) = zero
axiom c-par(y-axis) = zero

%% a point on the line if it satisfies the line equation, i.e.,

%% ax + by + ¢ = C where

%, x, y are x aud y coordinates of the point and

%% a, b, ¢ are the three parameters that make the line

op pt-on-line? : Point, Line -> Boolean

definition of pt-on-line? is

axiom pt-on-line?(make-point(x,y), make-line(a,b,c)) <=>

plus(plus(times(a,x),times(b,y)),c) = zero

end-definition

%% two points pl=(x1,y1), p2=(x2,y2) are on the same side of line = (a,b,c)

%h if axl + byl + ¢ > 0 and ax2 + by2 + ¢ > 0

%% or ax1 + byl + ¢ < 0 and ax2 + by2 + ¢ < 0

op same-side-of-line? : Point, Point, Line -> Boolean

definition of same-side-of-line? is

axiom same-side-of-line?(make-point(x1,yl),make-point(x2,y2),make-line(a,b,c)) <=>

(gt(plus(plus(times(a,x1),times(b,yl)),c),zero) &

gt (plus(plus(times(a,x2),times(b,y2)),c),zero)) or
(1t(plus(plus(times(a,x1),times(b,y1)),c),zero) &

92

1t (plus(plus(times(a,x2),times(b,y2)),c),zero))
end-definition

%% slope of straight line is -a/b
op slope : Line -> Real
definition of slope is
axiom
1n
axiom
1n = make-line(a,b,c) & ~“(b = zero) => slope(ln) = negate(div(a,b))
end-definition

make-line(a,b,c) & b = zero => slope(ln) = infinity

%% intersection with x-axis (or x-intercept) is x=-c/a
op x-cept : Line -> Real
definition of x-cept is

axiom x-cept(make-line(a,b,c)) = negate(div(c,a))
end-definition

%% intersection with y-axis (or y-intercept) is y= -c¢/b
op y-cept : Line -> Real
definition of y-cept is

axiom y-cept(make-line(a,b,c)) = negate(div(c,b))
end-definition

%% line is parallel to the x-axis if a=0
op x-pl? : Line -> Boolean
definition of x-pl? is

axiom x-pl?(p) <=> a-par(p) = zero
end-defiaition

%% line is paralle to the y-axis if b=0
op y-pl? : Line -> Boolean
definition of y-pl? is

axiom y-pl?(p) <=> b-par(p) = zero
end-definition

theorem x-pl?(x-axis)
theorem y-pl?(y-axis)

%% two lines are parallel when alxb2=a2xbl

op pl? : Line, Line -> Boolean

definition of pl? is

axiom pl?(1lnl,1n2) <=> times(a-par(lnl),b-par(1n2)) = times(a-par(1ln2),b-par(lni))
end-definition

93

%% two lines are perpendicular when alxa2 = -blxb2
op pp? : Line, Line -> Boolean
definition of pp? is
axiom pp?(1n1,1n2) <=>
times(a-par(ln1),a-par(ln2)) = negate(times(b-par(ln1),b-par(1n2)))
end-definition

%% the angle between two lines
op angle: Line, Line -> Real
definition of angle is
axiom pp?(1n1,1n2) => angle(lnl,1ln2) = nat-to-real(90)
axiom “pp?(1n1,1ln2) =>
angle(ln1,1n2) = arctan(div(minus(times(a-par(lni),b-par(1n2)),
times(a-par(1n2),b-par(1ln1))),
plus(times(a-par(1ln1),a-par(1n2)),
times(b-par(lni1),b-par(in2)))))
end-definition

Zero
nat-to-real (90)

theorem fa(lnl:Line, 1n2:Line) pl?(1nl,1n2) <=> angle(lni,1ln2)
theorem fa(lnl:Line, 1n2:Line) pp?(1n1,1n2) <=> angle(lni,1ln2)

I

theorem fa(lnl:Line, 1n2:Line) pl?(1n1,1n2) <=> slope(lnl) = slope(ln2)
theorem fa(lnl:Line, 1n2:Line) pp?(1nl,1n2) <=> times(slope(ln1),slope(ln2)) = negate

end-spec
spec SEGMENT is

import LINE

sorts Segment

op make-segment : Point, Point -> Segment

op start-point : Segment -> Point
op end-point : Segment -> Point

1
n

axiom start-point(make-segment(s,e))
axiom end-point(make-segment(s,e)) = e
axiom make-segment (start-point(s),end-point(s)) = s

%% from segment to line

%% if start point and end point have same x coordinates,

%% i.e., start-point = (x1,y1), end-point = (x2,y2) and x1=x2

%% then the canonical form of the line is x - x1 = O(one, zero, -x1)

94

%% otherwise, the canonical form of the line is
%y = ((y1-y2)/(x1-x2))x + (y1-(y1-y2)x1/(x1-x2)) (a-part,-1,c-part)
op seg-to-line : Segment -> Line
definition of seg-to-line is
axiom x-coord(start-point(sg)) = x-coord(end-point(sg)) =>
seg-to-line(sg) = make-line(one,zero,negate(x-coord(start-point(sg))))
axiom ~(x-coord(start-point(sg)) = x-coord(end-point(sg))) =>
seg-to-line(sg) = make-line(a-part(sg),b-part(sg),c-part(sg))
end-definition

op a-part : Segment -> Real
definition of a-part is
axiom a-part(sg) = div(minus(y-coord(start-point(sg)),y-coord(end-point(sg))),
minus (x-coord(start-point(sg)) ,x-coord(end-point(sg))))
end-definition

op b-part : Segment -> Real
definition of b-part is

axiom b-part(sg) = negate(one)
end-definition

op c-part : Segment -> Real
definition of c-part is
axiom c-part(sg) = minus(y-coord(start-point(sg)),
times (a-part(sg) ,x-coord(start-point(sg))))
end-definition

%% permutation of two pairs of points
op permutation? : (Point, Point), (Point, Point) -> Boolean
definition of permutation? is
axiom permutation?((pl,p2), (p3,p4)) <=>
(pl =p3&p2=p4d) or (pl =p4&p2=p3)
end-definition

op congruent-segment? : Segment, Segment -> Boolean
definition of congruent-segment? is
axiom congruent-segment?(make-segment(sl,el),make-segment(s2,e2)) <=>
permutation?((si,el), (s2,e2))
end-definition

%% slope of segment is defined in terms of slope of line
op slope : Segment -> Real
definition of (slope: (Segment -> Real)) is
axiom slope(sg) = (slope : (Line -> Real))(seg-to-line(sg))
end-definition

95

%% angle of segments is also defined in terms of slope of lines
op angle : Segment, Segment -> Real
definition of (angle: (Segment, Segment -> Real)) is
axiom angle(sl,s2) = (angle: (Line, Line -> Real)) (seg-to-line(s1),seg-to-line(s2)
end-definition

%% predicates of parallel or perpendicular
op pl? : Segment, Segment -> Boolean
definition of (pl?: (Segment, Segment -> Boolean)) is
axiom pl?(sl1,s2) <=> (pl?: (Line, Line -> Boolean))(seg-to-line(sl),seg-to-line(s2
end-definition
op pp? : Segment, Segment -> Boolean
definition of (pp?: (Segment, Segment -> Boolean)) is
axiom pp?(si,s2) <=> (pp?: (Line, Line -> Boolean)) (seg-to-line(sl),seg-to-line(s2.
end-definition

%% length of a segment
op length : Segment -> Real
definition of length is
axiom length(make-segment(s,e)) = pt-dis(s,e)
end-definition

%% point on segment

op pt-on-seg? : Point, Segment -> Boolean

definition of pt-on-seg? is

axiom pt-on-seg?(p,s) <=>

pt-on-line?(p,seg-to-line(s)) &
leq(pt-dis(p,start-point(s)),length(s)) & -
leq(pt-dis(p,end-point(s)),length(s))

end-definition

end-spec

spec TRIANGLE is

import SEGMENT

sort Triangle

op make-triangle : Point, Point, Point -> Triangle
op pA : Triangle -> Point

op pB : Triangle -> Point

op pC : Triangle -> Point

96

axiom pA(make-triangle(A,B,C)) = A
axiom pB(make-triangle(A,B,C)) = B
axiom pC(make-triangle(A,B,C)) =C

%% three sides of triangle

op side-a : Triangle -> Segment
definition of side-a is

axiom side-a(make-triangle(A,B,C))
end-definition

make-segment (B,C)

op side-b : Triangle -> Segment
definition of side-b is

axiom side-b(make-triangle(A,B,C))
end-definition

make-segment (C,A)

op side-c¢ : Triangle -> Segment
definition of side-c is

axiom side-c(make-triangle(A,B,C))
end-definition

make-segment (A,B)

%% three angles of a triangle
op angle-a : Triangle -> Real
definition of angle-a is
axiom angle-a(tri) = angle(side-b(tri),side-c(tri))
end-definition

op angle-b : Triangle -> Real
definition of angle-b is

axiom angle-b(tri) = angle(side-a(tri),side-c(tri))
end-definition

op angle-c : Triangle -> Real
definition of angle-c is

axiom angle-c(tri) = angle(side-a(tri),side-b(tri))
end-definition

%% an angle is acute when it is less than ninety degrees
op acute? : Real -> Boolean
definition of acute? is

axiom acute?(a) <=> 1lt(a, nat-to-real(90))
end-definition

%4 an angle is right when it is equal to 90 degrees
op right? : Real -> Boolean

97

definition of right? is
axiom right?(a) <=> a = nat-to-real(90)
end-definition

%% an angle is obtuse when it is larger than 90 degrees
op obtuse? : Real -> Boolean
definition of obtuse? is

axiom obtuse?(a) <=> gt(a,nat-to-real(90))
end-definition

%% acute triangle: all angles are acute

op acute-triangle? : Triangle -> Boolean

definition of acute-triangle? is '

axiom acute-triangle?(tri) <=>

acute?(angle-a(tri)) &
acute?(angle-b(tri)) &
acute?(angle-c(tri))

end-definition

%% right triangle: has one right angle
op right-triangle? : Triangle -> Boolean
definition of right-triangle? is
axiom right-triangle?(tri) <=>
right?(angle-a(tri)) or
right?(angle-b(tri)) or
right?(angle-c(tri))
end-definition

%% obtuse-triangle : has one obtuse angle

op obtuse-triangle? : Triangle -> Boolean

definition of obtuse-triangle? is

axiom obtuse-triangle?(tri) <=>

obtuse?(angle-a(tri)) or
obtuse?(angle-b(tri)) or
obtuse?(angle-c(tri))

end-definition

%% axioms of triangle

axiom plus(plus(angle-a(tri),angle-b(tri)),angle-c(tri)) =

axiom law-of-sines-1 is
div(length(side-a(tri)),sin(angle-a(tri)))
div(length(side-b(tri)),sin(angle-b(tri)))

axiom law-of-sines-2 is
div(length(side-a(tri)),sin(angle-a(tri)))
div(length(side-c(tri)),sin(angle-c(tri)))

98

nat-to-real(180)

%% permutaton of a pair of triple points
op permutation? : (Point,Point,Point), (Point,Point,Point) -> Boolean
definition of
(permutation? : ((Point,Point,Point), (Point,Point,Point) -> Boolean)) is
axiom permutation?((s1,s2,s3),(el,e2,e3)) <=>
(s1 = el & s2 =2¢e2 & s3 =e3) or
(s1 = el & s2 = e3 & s3 = e2) or
(s1 = e2 & s2 = el & 83 = e3) or
(s1 = e2 & s2 =e3 & 83 = el) or
(s1 = e3 & s2 =el & s3 = e2) or
(s1 = e3 & s2 =e2 & 83 = el)
end-definition

%4 two triangles are congruent if vertices are permutation of each other.
op congruent-triangle? : Triangle, Triangle -> Boolean
definition of congruent-triangle? is
axiom congruent-triangle?(make-triangle(s1,s2,s3) make-trlangle(el e2,e3)) <=>
permutation?((s1,s2,s3),(el,e2,e3))
end-definition

op pt-inside-triangle? : Point, Triangle -> Boolean
definition of pt-inside-triangle? is
axiom pt-inside-triangle?(p,t) <=>
same-side-of-1line?(p,pA(t),seg-to-line(side-a(t))) &
same-side-of-line?(p,pB(t),seg-to-line(side-b(t))) &
same-side-of-1line?(p,pC(t),seg-to-line(side-c(t)))
end-definition

end-spec

spec QUADRILATERALS is

import SEGMENT

sort Quad

sort-axiom Quad = (Point, Point, Point, Point) | quad?

op quad? : (Point, Point, Point, Point) -> Boolean

definition of quad? is
axiom quad?((A, B, C, D)) <=>

not (ex (p : Point) (pt-on-seg?(p,make-segment(A,B)) &

pt-on-seg?(p,make-segment (C,D)))) &

99

not (pt-on-1ine?(C,seg-to-line(make-segment(A,B)))) &

not(pt-on-1line?(D,seg-to-line(make-segment(B,C)))) &

not (pt-on-line?(A,seg-to-line(make-segment(C,D)))) &

not (pt-on-line?(B,seg-to-line(make-segment(D,A))))
end-definition

op make-quad : Point, Point, Point, Point -> Quad
op pA : Quad -> Point
op pB : Quad -> Point
op pC : Quad -> Point
op pD : Quad -> Point

axiom pA(make-quad(A,B,C,D))
axiom pB(make-quad(A,B,C,D)) =
axiom pC(make-quad(A,B,C,D))
axiom pD(make-quad(A,B,C,D))

|
O QW

axiom make-quad(pA(q),pB(q),pC(q),pD(q)) = g

%% four sides of quadrilaterals

op side-a : Quad -> Segment

definition of (side-a:(Quad -> Segment)) is
axiom side-a(q) = make-segment(pA(q),pB(q))

end-definition

op side-b : Quad -> Segment

definition of (side-b:(Quad -> Segment)) is
axiom side-b(q) = make-segment(pB(q),pC(q))

end-definition

op side-c : Quad -> Segment

definition of (side-c:(Quad -> Segment)) is
axiom side-c(q) = make-segment(pC(q),pD(q))

end-definition

op side-d : Quad -> Segment

definition of (side-d:(Quad -> Segment)) is
axiom side-d(q) = make-segment(pD(q),pA(q))

end-definition

%h four angles of quadrilaterals

op angle-a : Quad -> Real

definition of (angle-a:(Quad -> Real)) is
axiom angle-a(q) = angle(side-a(q),side-d(q))

end-definition

100

S

op angle-b : Quad -> Real

definition of (angle-b:(Quad -> Real)) is
axiom angle-b(q) = angle(side-a(q),side-b(q))

end-definition

op angle-c : Quad -> Real

definition of (angle-c:(Quad -> Real)) is
axiom angle-c(q) = angle(side-b(q),side-c(q))

end-definition

op angle-d : Quad -> Real

definition of (angle-d:(Quad -> Real)) is
axiom angle-d(q) = angle(side-c(q),side-d(q))

end-definition

axiom plus(plus(angle-a(q),angle-b(q)),
plus(angle-c(q),angle-d(q))) = nat-to-real(360).

end-spec

pec PARALLELOGRAM is

import QUADRILATERALS

sort PGram

sort-axiom PGram = Quad | pg:am?

%% in a parallelogram, opposite sides are parallel
op pgram? : Quad -> Boolean
definition of pgram? is
axiom pgram?(q) <=>
pl?(side-a(q),side-c(q)) & pl7(side-b(q),side-d(q))
end-definition

%% in a parallelogram, opposite sides have the same length

axiom fa(p:PGram)
(length(side-a(relax(pgram?) (p))) = length(side-c(relax(pgram?)(p))) &
length(side-b(relax(pgram?) (p))) = length(side-d(relax(pgram?)(p))))

%% in a parallelogram, two consecutive angles add up to 180 degrees.
axiom (plus(angle-a(relax(pgram?)(p)),angle-b(relax(pgram?)(p)))
nat-to-real(180))

axiom (plus(angle-b(relax(pgram?)(p)),angle-c(relax(pgram?)(p)))

101

= nat-to-real(180))

axiom (plus(angle-c(relax(pgram?) (p)),angle-d(relax(pgram?)(p)))
= nat-to-real(180))

axiom (plus(angle-d(relax(pgram?)(p)),angle-a(relax(pgram?)(p)))
= nat-to-real(180))

end-spec
spec RECTANGLE 1s

import PARALLELOGRAM

sort Rectangle

sort-axiom Rectangle = PGram | rectangle?

%% rectangle is a parallelogram in which all angles equal 90 degrees
op rectangle? : PGram -> Boolean
definition of rectangle? is
axiom rectangle?(p) <=> :
angle-a(relax(pgram?) (p)) = nat-to-real(90) &
angle-b(relax(pgram?) (p)) = nat-to-real(90) &
angle-c(relax(pgram?) (p)) = nat-to-real(90) &
angle-d(relax(pgram?) (p)) = nat-to-real(90)
end-definition

]

end-spec

spec RHOMBUS is

import PARALLELOGRAM

sort Rhombus

sort-axiom Rhombus = PGram | rhombus?

%%k a rhombus is a parallelogram in which adjacent sides have the same length
op rhombus? : PGram -> Boolean
definition of rhombus? is
axiom rhombus?(p) <=>
side-a(relax(pgram?) (p)) = side-b(relax(pgram?) (p))
end-definition

theoram fa(r:Rhombus)
(side-b(relax(pgram?) (relax(rhombus?) (r))) =

102

theorem fa(r:Rhombus)
(side-c(relax(pgram?) (relax(rhombus?)(r))) =
side-d(relax(pgram?) (relax (rhombus?) (r))))
theorem fa(r:Rhombus)
(side-d(relax(pgram?) (relax(rhombus?)(r))) =
side-a(relax(pgram?) (relax(rhombus?) (r))))

side-c(relax(pgram?) (relax(rhombus?) (r))))
end-spec

103

8.3 Ground-Based Low PRF Radar

!l in-package("SPEC")
Il in-grammar (’ ISPEC-GRAMMAR)
%% Specification for Ground-Based Low PRF Radar
spec GB_LPRF_RADAR is
import REAL

sorts Radar, Target, Range, Angle

sort-axiom Range = Real
sort-axiom Angle = Real

% light speed constant
const ¢ : Real

const two : Real

const four : Real

const sixteen : Real

const pi : Real

% Boltzman’s constant

const K : Real

% transmit and received losses
const L : Real

% noise temperature

const T : Real

%% overloading operations
op div : Real, Real -> Real

% basic arithematic operations
op sq : Real -> Real

definition of sq is

axiom sq(a) = times(a, a)

end-definition

op cube : Real -> Real
definition of cube is

axiom cube(a) = times(a, sq(a))
end-definition

op sqr : Real -> Real

%% basic radar parameters
% radar aperture

104

op ap : Radar -> Real

% radar wavelength

op wl : Radar -> Real

% interpulse period

op ipp : Radar -> Real

% radar dimension

op dim : Radar -> Real

% radar pulse length

op rpl : Radar -> Real

% signal-noise ratio threshold for detection
op sn_thres : Radar -> Real
% Power radiated by the radar
op pow : Radar -> Real

% Receiver noise bandwidth
op bn : Radar -> Real

% noise figure

op nf : Radar -> Real

% scan space

op ss : Radar -> Real

% scan time

op st : Radar -> Real

%% radar derived parameters
% beamwidth of radar
op bw : Radar -> Angle
definition of bw is
axiom bw(ra) = div(wl(ra), dim(ra))
end-definition
% radar gain
op gain : Radar -> Real
definition of gain is
axiom gain(ra) = div(times(four,pi), sq(bw(ra)))
end-definition
% radar frequency
op freq : Radar -> Real
definition of freq is
axiom freq(ra) = div(c,wl(ra))
end-definition
% average radiated power
op apow : Radar -> Real
definition of apow is
axiom apow(ra) = div(times(pow(ra),rpl(ra)),ipp(ra))
end-definition

%% -- Radar target attributes --

105

%% Radar target cross section

op rcs : Target -> Real

%% target azimuth and elevation coordinate

op azimuth : Target -> Real

op elevation : Target -> Real

%% elapsed time between transmitted and received signal
op et : Target -> Real

%% range function
op range : Target -> Range
definition of range is
axiom range(ta) = div(times(c, et(ta)), two)
end-definition

%% maximum range a radar can detect

op max_range : Radar -> Range

definition of max_range is i
axiom max_range(ra) = div(times(c, ipp(ra)), two)

end-definition

%% maximum range a radar can detect for a specific target
op mtr : Radar, Target -> Range
definition of mtr is
axiom mtr(ra,tar) =
sqr(sqr(div(times(times(apow(ra),ap(ra)),
times(rcs(tar),st(ra))),
times(times(times(sixteen,K),T),
times (times(L,sn_thres(ra)),ss(ra))))))
end-definition

%% target power received at the radar.
op pr : Radar, Target, Range -> Real
definition of pr is
axiom pr(ra,tar,r) =
div(times(times(pow(ra),sq(gain(ra))),
times(sq(wl(ra)),rcs(tar))),
times(cube(times(four,pi)),times(sq(r),sq(r))))
end-definition

%% total receiver noise power
op noise : Radar -> Real
definition of noise is
axiom noise(ra) = times(times(nf(ra),K),times(T,bn(ra)))
end-definition

106

op sn_ratio : Radar, Target, Range -> Real
definition of sn_ratio is
axiom sn_ratio(ra,tar,r) =
div(pr(ra,tar,r),times(noise(ra),L))
end-definition

%% range resolution
op rr : Radar -> Range
definition of rr is
axiom rr(ra) = div(times(c, rpl(ra)), four)
end-definition

%% angluar resolution
op ar : Radar -> Angle
definition of ar is
axiom ar(ra) = div(bw(ra), two)
end-definition

%% radar range deviation

op rrd : Radar, Target, Range -> Range

definition of rrd is .
axiom rrd(ra,tar,r) = div(rr(ra),sqr(sn_ratio(ra,tar,r)))
end-definition

%% radar angular deviation
op rad : Radar, Target, Range -> Angle
definition of rad is
axiom rad(ra,tar,r) = div(ar(ra), sqr(sn_ratio(ra,tar,r)))
end-definition

%% radar uncertainty measurement
op uncertain : Radar, Target, Range -> Real
definition of uncertain is
axiom uncertain(ra,tar,r) = div(one,times(rrd(ra,tar,r),two))
end-definition

%/ axioms
% maximum range axiom
axiom max_range is

fa (target, radar) leq(mtr(radar,target), max_range(radar))
%» maximum target range axiom
axiom max_target_range is

fa (target, radar) leq(range(target), mtr(radar,target))
end-spec

107

108

8.4 FLIR

'l in-package("SPEC")
!l in-grammar (> ISPEC-GRAMMAR)

spec FLIR is
import REAL

sorts Flir, Target, Range, Angle
sort-axiom Angle = Real
sort-axiom Range = Real

const Four : Real
const Pi : Real

%% basic overloading operations
op div : Real, Real -> Real
op sq : Real -> Real
definition of sq is

axiom sq(a) = times(a,a)
end-definition
op sqr : Real -> Real

%% basic FLIR constants
const Kfd : Real JJ% bandwidth proportionality constant

const Ko : Real %% optics loss
const Kc : Real %% electronics loss
const KA : Real %/ detector loss
const Km : Real %% monitor loss

%% basic FLIR parameters

% diameter of optical aperture

op dia : Flir -> Real

% instantaneous field of view of each detector
op IFOV : Flir -> Real

% focal number

op fn : Flir -> Real

% solid angle coverage of the sensor
op omega : Flir -> Real

% frame time

op Tf : Flir -> Real

% number of detectors in parallel

109

op nod : Flir -> Real

% total scanning loss factor
op Kn : Flir -> Real

% detector detectivity

op dstar : Flir -> Real

%% basic target parameters
% radiation intensity

op Jt : Target -> Real

% target range

op range : Target -> Range

%% Performance (for point source target radiating in a narrow bandwidth)
% irradiance at the entrance aperture of the optics
op Ht : Target -> Real
definition of ht is

axiom Ht(tar) = div(jt(tar), sq(range(tar)))
end-definition
% signal power at the optical aperture
op spow : Flir, Target -> Real
definition of spow is

axiom spow(fl,tar) = times(div(times(Pi,sq(dia(f1))), Four), Ht(tar))
end-definition :
% detector area

op Ad : Flir -> Real
definition of Ad is

axiom Ad(fl) = times(IFOV(fl),sq(times(fn(fl),dia(£f1))))

end-definition
% number of resolution elements
op Nr : Flir -> Real
definition of Nr is

axiom Nr(fl) = div(omega(fl), IFOV(fl))
end-definition
% on-target time per resolution cell
op Td : Flir -> Real
definition of Td is '

axiom Td(fl) = times(times(nod(fl), Kn(f1)),div(Tf(f1l), Nr(f1)))
end-definition
% equivalent filter noise bandwidth

op df : Flir -> Real
definition of df is

axiom df (f1) = div(Kfd, Td(f1))

end-definition
% detector noise level

op npow : Flir -> Real

110

definition of npow is
axiom npow(fl) = div(sqr(times(Ad(f1), df(£1))), dstar(fl))
end-definition
% system modulation transfer function (MTF)
op MIF : Flir -> Real
definition of MIF is
axiom MTF(fl) = times(times(ko,Kc),times(Kd,Km))
end-definition
% system loss factor
op loss : Flir -> Real
definition of loss is
axiom loss(fl) = times(MTF(fl1), sqr(div(Kn(fl),Kfd)))
end-definition ‘
% signal-noise ratio
op sn_ratio : Flir, Target -> Real
definition of sn_ratio is
axiom sn_ratio(fl, tar) = times(div(spow(fl,tar),npow(fl)), loss(fl))
end-definition ’

end-spec

111

8.5 Ladar

YA
oo
yAA
oo
yAA

sp

in-package ("SPEC")
in-grammar (’ ISPEC-GRAMMAR)

Laser radar systems are active devices that operate in a manner very
similar to microwave radars but at a much higher frequency. This higher
irequency ailows using smaller components, and has remarkable angular
accuracy. The atmospheric attenuation losses, however, are considerable

at these high frequencies.
ec LADAR is
import REAL
sorts Ladar, Target, Range, Angle
sort-axiom Range = Real

sort-axiom Angle = Real

const two : Real

const Pi : Real

const four : Real

const C : Real %% light speed
const Pc : Real %% Plank’s constant

%% basic new and overloading operations of Real

op times3 : Real, Real, Real -> Real

d.rinitionm ¢f times3 is: . o .
axiom tircs3(a,b,c) = times(times(a,b), c)

end-definition

op times4 : Real, Real, Real, Real -> Real
definition of times4 is

axiom times4(a,b,c,d) = times(times(a,b), times(c,d))
end-definition

op div : Real, Real -> Real
op sq : Real -> Real
definition of sq is

axiom sq(a) = times(a,a)
end-definition

%% basic target parameters

112

% target backscattering coefficient

op tbc : Target -> Real

% distribution of incident power assumption
op Lambertian : Target -> Boolean

% radar cross section (RCS)

op rcs : Target -> Real

% small or large target

op small : Target, Ladar -> Boolean

% elapsed time between transmit and receive pulses
op et : Target -> Real

% target angular position

op az : Target -> Angle

op el : Target -> Angle

%% basic laser radar parameters
% transmitted pulsed power
op pow : Ladar -> Real

% lens area

op area : Ladar -> Real

% optical efficiency

op oe : Ladar -> Real

% ladar beamwidth

op bw : Ladar -> Angle

% ladar wavelength

op rwl : Ladar -> Real

% ladar dimension

op dim : Ladar -> Real

% Ladar frequency

op freq . Ladar -> Real

% recei.er bandwidth

op rb : Ladar -> Real

% quantum efficiency

op qe : Ladar -> Real

axiom beamwidth_wavelength_dimension is
bw(la) = div(rwl(la), dim(la))

axiom radar_area_and_dimension is
area(la) = div(times(Pi, sq(dim(la))), four)

axiom radar_wavelength_and_frequency is
rwl(la) = div(C, freq(la))

%% measurement calculations

% distance between radar and target
op range : Target -> Range
definition of range is

113

axiom range(taf) = div(times(C, et(tar)), two)
end-definition '

%% Performance calculations
% signal-noise ratio
op spowl : Ladar, Target -> Real
definition of spowl is
axiom spowl(la,tar) = div(times4(pow(la),area(la),oe(la),tbc(tar)),
times(Pi, sq(range(tar))))
end-definition
op spow2 : Ladar, Target -> Real
definition of spow2 is
axiom spow2(la,tar) = div(times3(spowi(la,tar),two,rcs(tar)),
times3(Pi,sq(range(tar)), sq(bw(la))))
end-definition
op spow : Ladar, Target -> Real
definition of spow is
axiom Lambertian(tar) => spow(la, tar) = spowl(ia, tar)
axiom ~Lambertian(tar) => spow(la, tar) = div(spowl(la,tar), two)
axiom small(tar,la) => spow(la,tar) = spow2(la, tar)
end-definition
op noise : Ladar -> Real
definition of noise is _
axiom noise(la) = times(div(times(freq(la), Pc), qge(la)), rb(la))
end-definition
op sn_ratio : Ladar, Target -> Real
definition of sn_ratio is
axiom sn_ratio(la,tar) = div(spow(la,tar), noise(la))
end-definition

end-spec

114

8.6 MMW Radar

It in-package("SPEC")
'l in-grammar (’ ISPEC-GRAMMAR)

%% MMW radar systems for ground applications are constructed at frequencies
%% of 35, 95, 140, and 220 GHz.

%% MMW radar systems are used to detect nommoving targets, which can be

%% stationary ground targets, such as tanks and trucks, or airborne hovering
%% helicopters, and the detection could take place day or night, in the

%% presence of ground clutter return, and under adverse weather conditions.

spec MMW_RADAR is
import REAL
sorts Radar, Target, Range, Angle

sort-axiom Range = Real
sort-axiom Angle = Real

%% constants
const C : Real %% light speed
const two : Real

%% overloading operations
op div : Real, Real -> Real
op leq : Real, Real -> Boolean

%% basic MMW radar parameters
% radar wavelength

op rwl : Radar -> Real

% peak power

op ppow : Radar -> Real

% radar pulse width

op rpw : Radar -> Real

% pulse repeat frequency

op prf : Radar -> Real

% radar antenna diameter

op rad : Radar -> Real

% radar antenna aperture

op raa : Radar -> Real

% radar frametime

op rft : Radar -> Real

% radar equivalent noise temperature

115

op rent : Radar -> Real

% losses

op loss : Radar -> Real

% azimuth scan

op ras : Radar -> Angle

% elevation scan

op res : Radar -> Angle

% target-to-clutter signal ratio for detection
op tc_ratio : Radar -> Real

% backscattering cross section
op bcs : Radar -> Real

%% derived radar parameters
% average power

op apow : Radar -> Real
definition of apow is

axiom apow(ra) = times(times(ppow(ra), rpw(ra)), prf(ra))
end-definition
% radar beamwidth

op bw : Radar -> Angle

definition of bw is

axiom bw(ra) = div(rwl(ra), rad(ra))

end-definition

%% -- Radar target attributes --

%% Radar target cross section

op rcs : Target -> Real

%% target azimuth and elevation coordinate

op azimuth : Target -> Real

op elevation : Target -> Real

%% elapsed time between transmitted and received signal
op et : Target -> Real

%% radar measurements
op range : Target -> Range
definition of range is
axiom range(ta) = div(times(C, et(ta)), two)
end-definition

%% performance of radar
% range resulution
op rr : Radar -> Range
definition of rr is
axiom rr(ra) = div(times(C, rpw(ra)), two)
end-definition

116

% detection range of nonmoving target
op rdr : Radar, Target -> Range
definition of rdr is
axiom rdr(ra,t) = div(rcs(t), times(times(rr(ra),bw(ra)),
times(tc_ratio(ra),bcs(ra))))
end-definition

%% detection range axiom
axiom detection_range is

fa(tar) leq(range(tar), rdr(ra, tar))

end-spec

117

8.7 SAR

'l in-package("SPEC")

!l in-grammar (’ ISPEC-GRAMMAR)
spec SAR is

import Real

sorts Sar, Target, Range, Angle
sort-axiom Range = Real
sort-axiom Angle = Real

const C : Real
const two : Real

%% overloading operations
op div : Real, Real -> Real
op cos : Real -> Real

op sin : Real -> Real

%% basic SAR radar parameters
% airplane velocity

const V : Real

% doppler shifts resolution
op doppler : Sar -> Real

% radar pulse length

op rpl : Sar -> Real

% depression angle

op alpha : Sar -> Angle

% subtended angle between the velocity vector and R
op theta : Sar -> Angle

% pluse compression ratio

op pc : Sar -> Real

% sar radar waveléngth

op wl : Sar -> Real

%% basic target attributes
% elapsed time

op et : Target -> Real

% x, y coordinates

op x-coor : Target -> Real
op y-coor : Target -> Real

118

%% range function
op range : Target -> Range
definition of range is
axiom range(tar) = div(times(C, et(tar)), two)
end-definition

%% resulution functions
% range resolution
op rr : Sar -> Range
definition of rr is
axiom rr(sar) = div(times(C, rpl(sar)), two)
end-definition
% x direction resolution
op xr : Sar -> Range
definition of xr is
axiom xr(sar) = div(div(rr(sar), cos(alpha(sar))), pc(sar))
end-definition
% y direction resolution
op yr : Sar, Range -> Range
definition of yr is
axiom yr(sar,r) = div(times(times(r,wl(sar)), doppler(sar)),
times (times(two, V), sin(theta(sar))))
end-definition

end-spec

119

Chapter 9
Appendix B: Code for Chapter 4

The fuzzy specification library contains the following specs :

fuzzy set: fs.re

fuzzy number: fs.re

fuzzy arithmetic: fa.re
fuzzy reasoning: fr.re
image: image.re
fuzzification: ff.re
tri-fuzzify: triff.re
tra-fuzzify: traff.re
gua-fuzzify: guaff.re
defuzzification: defuzzy.re
defuzzification-2: defuzzy2.re
edge point : epoint.re

edge : edge.re

fuzzy edge point: fepoint.re

%% Formal Information Fusion Library Specs

%% Fuzzy edge point specification: FUZZY-EDGE

%% Author: Jingsong Li

%% Created: Aug. 18, 1998

%% Last updated: Nov. 2, 1999

%% Comments: For a long time I have been stuck at how to define
%% fuzzy logic operations such as fuzzy equal, fuzzy less than
%% and fuzzy great than.

%% Modified: July 8, 2000

%% Modified the signature of ops fgrad, fvar, fuzzy-edge-point?, etc.
%’ Modified: Aug. 11,2000

%% Modified: Jan. 26,2001 by Gulsah Cakiroglu

%% Added the theorem

120

Il in-package("SPEC")
!'! in-grammar(’ispec-grammar)

%% how to derive fuzzy edge points

% If grad(I, x, y) = 0 and var(I, x, y) < thrd
%% then (x, y) is an Edge-point.(crisp algorithm)
%% Fuzzy logic: - ,
% If fgrad(I, x, y) is fuzzy equal to zero and
%% fvar(I, x, y) is fuzzy greater than thrd

%% then (x, y) is a Fuzzy-edge-point.

%% Here zero is fuzzified to fuzzy zero by

%% fzero = tri-fuzzify(zero, dlevel)

%% thrd is also fuzzified to fuzzy thrd by

%% fthrd = tri-fuzzify(thrd, dlevel)

%% Fuzzy and takes a minimum

%% Fuzzy-edge-point is a function sort

spec FUZZY-EDGE is
import TRI-FUZZIFY

sort ONE-SORT
sort Fuzzy-edge-point

const thrd : Real

op fgrad : Tri-fuzzy-imag., Integer, Integer -> Fuzzy-number

op fvar : Tri-fuzzy-image, Integer, Integer -> Fuzzy-number

op fysum : Tri-fuzzy-image, Integer, Integer -> Fuzzy-number

op felmt : Tri-fuzzy-image, Integer, Integer -> Fuzzy-number

op fm : Tri-fuzzy-image, Integer, Integer -> Fuzzy-number

op fsub : Tri-fuzzy-image, Integer, Integer —-> Fuzzy-number

op Fuzzy-edge-point : Tri-fuzzy-image, Integer, Integer -> Uni-intvl

%% Edge-point is a function sort
sort-axiom Fuzzy-edge-point = Tri-fuzzy-image, Integer, Integer -> Uni-intvl

%% definition of fuzzy Laplacian
definition of fgrad is

121

axiom fgrad is
fa(F:Tri-fuzzy-image, x: Integer, y: Integer)
(fgrad(F, x, y) =
fuzzy-sub
(fuzzy-add
(fuzzy-add(F(plus(x, one), y),
F(plus(x, inv-plus(one)), y)),
fuzzy-add(F(x, plus(y, ome)),
F(x, plus(y, inv-plus(one))))),
fuzzy-add
(fuzzy-add(F(x, y),F(x, y)),
fuzzy-add(F(x, y),F(x, y)))))
end-definition

definition of fsub is
axiom fsub is
fa(F:Tri-fuzzy-image, x: Integer, y: Integer)
(fsub(F, x, y) =
fuzzy-add
(fuzzy-add
(fuzzy-add
(F(x, plus(y, inv-plus(plus(one, one)))),
F(x, plus(y, inv-plus(one)))),
fuzzy-add
(F(x, y),
F(x, plus(y, one)))),
F(x, plus(y, plus(one, one)))))
end-definition

definition of fm is
axiom fm is
fa(F:Tri-fuzzy-image, x: Integer, y: Integer)
(fm(F, x, y) =
(fuzzy-add
(fuzzy-add
(fuzzy-add
(fsub(F, plus(x, inv-plus(plus(one, one))), y),
fsub(F, plus(x, inv-plus(one)), y)),
fuzzy-add
(fsub(F, x, y),
fsub(F, plus(x, one), y))),
fsub(F, plus(x, plus(one, one)), y))))
end-definition

definition of felmt is

122

axiom felmt is
fa(F:Tri-fuzzy-image, x: Integer, y: Integer)
(felmt(F, x, y) =

(fuzzy-mult

(fuzzy-sub(F(x, y),
F(x, y)),

fuzzy-sub(F(x, y), F(x, y)))))

end-definition

definitinu of fysum is
axiom fysum is
fa(F:Tri-fuzzy-image, x: Integer, y: Integer)
(fysum(F, x, y) = '
(fuzzy-add
(fuzzy-add
(fuzzy-add
(felmt(F, x, plus(y, inv-plus(plus(one, omne)))),
felmt(F, x, plus(y, inv-plus(one)))),
fuzzy-add
(felmt(F, x, y),
felmt(F, x, plus(y, ome)))),
felmt(F, x, plus(y, plus(one, one))))))
end-definition

%% definition of fuzzy local variance
definition of fvar is
axiom fvar is
fa(F:Tri-fuzzy-image, x: Integer, y: Integer)
(fvar(F, &, y) =
(fuzzy--.dd
(fuzzy-add
(fuzzy-add
(fysum(F, plus(x, inv-plus(plus(one, omne))), y),
fysum(F, plus(x, inv-plus(one)), y)),
fuzzy-add
(fysum(F, x, y),
fysum(F, plus(x, one), y))),
fysum(F, plus(x, plus(one, one)), y))))
end-definition

%% Fuzzy edge point
definition of Fuzzy-edge-point is
axiom Fuzzy-edge-point is

fa(F:Tri-fuzzy-image, x: Integer, y: Integer, Fep:Fuzzy-edge-point)

123

(Fep(F,x,y)=
(uni-min(fgeq(fvar(F, x, y), tri-fuzzify (thrd, delta)),
fequal(fgrad(F, x, y), tri-fuzzify (nzero, delta)))))

end-definition

%%Theorem
theorem proof is
fa(x:Integer, y:Integer, I:Image, delta2:Nz ,deltal:Nz)
(1tx(relax(nnonzero?)(delta2) ,relax(nnonzero?)(deltal)) =>
1tx(relax(between-zero-one?)
(Fuzzy-edge-point(tri-fuzzify-image(I,delta2),x,y)),
relax(between-zero-one?)
(Fuzzy-edge-point (tri-fuzzify-image(I,deltal),x,y))))

end-spec

%% Formal Information Fusion Library Specs

%% Fuzzy set specification

%% Author: Jingsong Li

%% Created: June 20, 1998

%% Last updated: Nov. 3, 1998

%% Comments: Fuzzy set is defined as a total function sort
%% Fuzzy-set = E -> Uni-intvl

%% Modified: Sept. 30, 1999

%% Added components: t-norm, t-conorm

%% Modified: Nov. 28, 1999

%% Added components: t-norm-min, t-conorm-min
%% t-norm-Luka, t-conorm-Luka

%% t-norm-prod, t-conorm-prod

! in-package ("SPEC")

!l in-grammar (’ispec-grammar)

%% A new sort [0, 1] is defined as Uni-intvl

spec UNI-INTVL is
import
translate REAL by {complete-order-1t-2 -> 1tx,
sto-leq -> legx}
sort Uni-intvl
op between-zero-one? : Real -> Boolean

124

definition of between-zero-one? is
axiom between-zero-one? (x) <=>
leqx(x, one) & leqx(zero, x)
end-definition

sort-axiom Uni-intvl = Real | between-zero-one?

end-spec

%% Fuzzy set is defined as a total function.

spec FUZZY-SET is
import SET, UNI-INTVL

sort Fuzzy-set

op alpha-cut : Fuzzy-set, Uni-intvl -> Set

op height : Fuzzy-set -> Uni-intvl

op fuzzy-complement : Fuzzy-set -> Fuzzy-set

op t-norm : Fuzzy-set, Fuzzy-set -> Fuzzy-set

op t-conorm : Fuzzy-set, Fuzzy-set -> Fuzzy-set

op t-norm-min : Fuzzy-set, Fuzzy-set -> Fuzzy-set

op t-conorm-min : Fuzzy-set, Fuzzy-set -> Fuzzy-set
op t-norm-Luka : Fuzzy-set, Fuzzy-set -> Fuzzy-set
op t-conorm-Luka : Fuzzy-set, Fuzzy-set -> Fuzzy-set
op t-norm-prod : Fuzzy-set, Fuzzy-set -> Fuzzy-set
op t-conorm-prod : Fuzzy-set, Fuzzy-set -> Fuzzy-set
op max : Real, Real -> Real

op min : Real, Real -> Real

%% Fuzzy-set is a function sort
sort-axiom Fuzzy-set = E -> Uni-intvl

definition of fuzzy-complement is
axiom fa(f1 : Fuzzy-set, f2: Fuzzy-set, d: E)
(fuzzy-complement (f1) = f2 <=>
relax(between-zero-one?) (£2(d))
= plus(one, inv-plus(relax(between-zero-one?)(£1(d)))))
end-definition

definition of t-norm is
axiom fa(f1: Fuzzy-set, f2: Fuzzy-set, f3: Fuzzy-set, d: E)

125

(t-norm(f1, £2) = £3 <=>
relax(between-zero-one?) (£3(d)) =
min(relax(between-zero-one?) (f1(d)),

relax(between-zero-one?) (£2(d))))
end-definition

definition of t-conorm is

axiom fa(f1: Fuzzy-set, f2: Fuzzy-set, f3: Fuzzy-set, d: E)

(t-conorm(f1, f2) = £3 <=> '

relax(between-zero-one?) (£3(d)) =

max (relax(between-zero-one?) (f1(d)),
relax(between-zero-one?) (£2(d))))

end-definition

axiom fa(xl: Real, x2: Real)
(min(x1, x2) = x1 <=> legx(xl, x2) &
min(x1l, x2) = x2 <=> legx(x2, x1))

axiom fa(x1l: Real, x2: Real)
(max(x1, x2) = x1 <=> leqx(x2, x1) &
max(x1, x2) = x2 <=> legx(xl, x2))

definition of t-norm-min is

axiom fa(fl: Fuzzy-set, f2: Fuzzy-set, £3: Fuzzy-set, d: E)

(t-norm-min(f1, £f2) = £3 <=> '

relax(between-zero-one?) (£f3(d)) =

min(relax(between-zero-one?) (£f1(d)),
relax(between-zero-one?) (£2(d))))

end-definition

definition of t-conorm-min is

axiom fa(f1: Fuzzy-set, f2: Fuzzy-set, f3: Fuzzy-set, d: E)

(t-conorm-min(f1, £f2) = £3 <=>

relax(between-zero-one?) (£3(d)) =

max (relax(between-zero-one?) (f1(d)),
relax(between-zero-one?) (£2(d))))

end-definition

definition of t-norm-Luka is
axiom fa(fl: Fuzzy-set, f2: Fuzzy-set, f3: Fuzzy-set, d: E)
(t-norm-Luka(f1, £f2) = f3 <=>
relax(between-zero-one?) (£f3(d)) =
max(zero, plus(plus(relax(between-zero-one?)(£2(d)),
relax(between-zero-one?) (f1(d))),
inv-plus(one))))

126

end-definition

definition of t-conorm-Luka is

axiom fa(fl: Fuzzy-set, f2: Fuzzy-set, f3: Fuzzy-set, d: E)

(t-conorm-Luka(f1l, £f2) = £3 <=>

relax(between-zero-one?) (£3(d)) =

min(one, plus(relax(between-zero-one?) (f2(d)),
relax(between-zero-one?) (£1(d)))))

end-definition

definition of t-norm-prod is

axiom fa(f1i: Fuzzy-set, f2: Fuzzy-set, f3: Fuzzy-set, d: E)

(t-norm-prod(f1, £2) = £3 <=>

relax(between-zero-one?) (£3(d)) =

times(relax(between-zero-one?) (f2(d)),
relax(between-zero-one?) (£1(d))))

end-definition

definition of t-conorm-prod is

axiom fa(fl: Fuzzy-set, f2: Fuzzy-set, f£3: Fuzzy-set, d: E)

(t-conorm-prod(f1, £f2) = £3 <=>

relax(between-zero-one?) (£3(d)) =

plus(plus(relax(between-zero-one?) (£2(d)),
relax(between-zero-one?) (f1(d))),

inv-plus(times(relax(between-zero-one?) (f2(d)),
relax(between-zero-one?) (£1(d))))))
end-definition

%% the result of alpha-cut of a fuzzy-set is a crisp set

definition of alpha-cut is
axiom fa(f: Fuzzy-set, d: E, S: Set, a: Uni-intvl)
(alpha-cut(f,a) = S <=> (in(d, S) <=>
legx(relax(between-zero-one?) (a),
relax(between-zero-one?) (£(d)))))
end-definition

definition of height is

axiom fa(f: Fuzzy-set, d: E, a: Uni-intvl)

(height(f) = a <=> leqx(relax(between-zero-one?)(f(d)),
relax(between-zero-one?) (a)))

end-definition

127

end-spec

%% Formal Information Fusion Library Specs

%% Fuzzy number specification

%% Author: Jingsong Li

%% Created: July 28, 1998

%% Last updated: Nov. 3, 1998

%% Comments: Fuzzy number is a specific fuzzy set when
%% E = Real

1! in-package ("SPEC")
! in-grammar (’ispec-grammar)

%% Fuzzy-number is import from Fuzzy-set by some translation

spec FUZZY-NUMBER is
import
translate FUZZY-SET by {Fuzzy-set -> Fuzzy-number,
Set -> Set-of-Real}

sort-axiom E = Real
%% Fuzzy-number is normal

axiom normality is
fa(f: Fuzzy-number)
(relax(between-zero-one?) (height (f)) = one)

%% Fuzzy-number is convex

axiom convexity is
fa(f: Fuzzy-number, x1: Real, x2: Real, lamd: Uni-intvl)
(legx(relax(between-zero-one?) (f(x1)),
relax(between-zero-one?)
(f (plus(times(relax(between-zero-one?) (lamd), x1),
times(plus(one,
inv-plus
(relax(between-zero-one?) (lamd))),
x2)))))
or
legx(relax(between-zero-one?) (f(x2)),
relax(between-zero—-one?)

128

(f

(plus(times(relax(between-zero—one?)(lamd), x1),

times(plus(one,

Wk

e

A5
yAA
e
Yoo
YA
e
YA
hh
e
hoto

'
N

Sp

inv-plus
(relax(between-zero-one?) (lamd))),

x2))))))

alpha-cut of Fuzzy-number is a closed interval

theorem alpha-cut-closed is

fa(f: Fuzzy-number, a: Uni-intvl, S: Set-of-Recl)
(alpha-cut(f, a) = S <=> (fa(d: Real) (in(d, S) =>
ex(dl: Real, d2: Real)

legx(dl, d2) &

leqx(dl, d) &

legx(d, d2))))

nd-spec

Formal Information Fusion Library Specs

Fuzzy arithmetic operations specification: FUZZY-ARITHM
Author: Jingsong Li

Created: July 29,1998

Last updated: Nov. 10,1998

Comments: Definition of these operations is specified
following the second method suggested by Klir

Modified: Feb. 17,1999

Modified: Jan. 12,2001 by Gulsah Cakiroglu

Added components: fuzzy-min, fuzzy-max

in-package ("SPEC")
in-grammar (’ ispec-grammar)

ec FUZZY-ARITHM is
import FUZZY-NUMBER

op fuzzy-add : Fuzzy-number, Fuzzy-number -> Fuzzy-number
op fuzzy-sub : Fuzzy-number, Fuzzy-number -> Fuzzy-number
op fuzzy-mult : Fuzzy-number, Fuzzy-number -> Fuzzy-number
op fuzzy-div : Fuzzy-number, Fuzzy-number -> Fuzzy-number
op fuzzy-min : Fuzzy-number, Fuzzy-number -> Fuzzy-number

129

op fuzzy-max : Fuzzy-number, Fuzzy-number -> Fuzzy-number

Yoo
%% definition for fuzzy-add
he
definition of fuzzy-add is
axiom
fuzzy-add (f1: Fuzzy-number, f2: Fuzzy-number)(z:Real)= a:Uni-intvl <=>
fa(x: Real, y: Real)
((z = plus (x,y) =>(legx(relax(between-zero-one?) (£1(x)),
relax(between-zero-one?) (a))
or
1eqx(relax(between~zero—one?)(f2(y)),relax(between»zero—one?)(a)))
&
ex(x: Real, y: Real)(z = plus(x,y)
&
f1(x) = a & legx(relax(between-zero-one?)(a),
relax(between-zero-one?) (£2(y)))
or
£f2(y) = a & legx(relax(between-zero-one?) (a),
relax(between-zero-one?) (£1(x))))))
end-definition

A
%% definition for fuzzy-sub

ol

definition of fuzzy-sub is
axiom
fuzzy-sub(f1: Fuzzy-number, f2: Fuzzy-number)(z:Real)= a:Uni-intvl <=>
fa(x: Real, y: Real) ‘
((z =plus (x,inv-plus(y)) =>(leqx(relax(between-zero-one?)(f1(x)),
relax(between-zero-one?) (a))
or
legx(relax(between-zero-one?) (£2(y)),relax(between-zero-one?) (a))))
&
ex(x: Real, y: Real)(z =plus(x,inv-plus(y))
&
f1(x) = a & leqx(relax(between-zero-one?)(a),
relax(between-zero-one?) (£2(y)))
or
f2(y) = a & legx(relax(between-zero-one?)(a),
relax(between-zero-one?) (£1(x)))))
end-definition

130

y¥A
%% definition for fuzzy-mult

i

definition of fuzzy-mult is
axiom
fuzzy-mult (f1: Fuzzy-number, f2: Fuzzy-number)(z:Real)= a:Uni-intvl <=>
fa(x: Real, y: Real)
((z = times (x,y) =>(leqx(reiax(between-zero-one?) (f1(x)),
relax(between-zero-one?) (a))
or ‘
legx (relax(between-zero-one?) (f2(y)),relax(between-zero-one?) (a))))
&
ex(x: Real, y: Real)(z = times(x,y)
&
f1(x) = a & leqx(relax(between-zero-one?) (a),
relax(between-zero-one?) (£2(y)))
or
f2(y) = a & leqgx(relax(between-zero-one?) (a),
relax(between-zero-one?) (f1(x)))))
end-definition
e
%% definition for fuzzy-div
YA
definition of fuzzy-div is
axiom
fuzzy-div (f1: Fuzzy-number, f2: Fuzzy-number)(z:Real)= a:Uni-intvl <=>
fa(x: Real, y: Real) -
((x= times (y,z) =>(leqgx(x:lax(between-zero-one?) (f1(x)),
relax(between-zero-one?)(a))
or :
legx(relax(between-zero-one?) (£2(y)),relax(between-zero-one?)(a))))
&
ex(x: Real, y: Real)(x = times(y,z)
&
f1(x) = a & leqx(relax(between-zero-one?)(a),
relax(between-zero-one?) (£2(y)))
or
f2(y) = a & leqx(relax(between-zero-one?)(a),
relax(between-zero-one?) (f1(x)))))
end-definition

131

oo
%% definition for fuzzy-min
YA
definition of fuzzy-min is
axiom
fuzzy-min (f1: Fuzzy-number, f2: Fuzzy-number)(z:Real)= a:Uni-intvl <=>
fa(x: Real, y: Real)
((z = min(x,v) =>(leqx(relax(between-zero-one?) (£1(x)),
relax(between-zero-one?) (a))
or
leqx(relax(between-zero—one?)(f2(y)),relax(between—zero-one?)(a)))
&
ex(x: Real, y: Real)(z = min(x,y)
&
f1(x) = a & legx(relax(between-zero-one?)(a),
relax(between-zero-one?) (£2(y)))
or
f2(y) = a & legx(relax(between-zero-one?)(a),
relax(between-zero-one?) (£1(x))))))
end-definition

YA
%% definition for fuzzy-max
yAA
definition of fuzzy-max is
axiom
fuzzy-max (f1: Fuzzy-number, f2: Fuzzy-number) (z:Real)= a:Uni-intvl <=>
fa(x: Real, y: Real)
((z = max(s,v) =>(leqx(relax(between-zero-one?) (f1(x)),
relax(beiween-zero-one?) (a))
or
leqx(relax(between-zero-one?)(f2(y)),relax(between—zero—one?)(a)))
&
ex(x: Real, y: Real)(z = max(x,y)
&
f1(x) = a & leqx(relax(between-zero-one?)(a),
relax(between-zero-one?) (£2(y)))
or
£f2(y) = a & legx(relax(between-zero-one?)(a),
relax(between-zero-one?) (£1(x))))))
end-definition
end-spec

%% Formal Information Fusion Library Specs

132

ot
hlh
o
Wik
b
ol

'
1
YAA
YAA
YA

Sp

Fuzzy reasoning operations specification: FUZZY-REASONING
Author: Jingsong Li

Created: Sept. 29, 1999

Last updated: Dec. 10, 1999

Comments: Definition of these operations is specified
following the method suggested by Kruse

in-package ("SPEC")
in-grammar (’ispec-grammar)

Fuzzy reasoning operators coould be defined in various
ways. Here I present one version(Lukasiewicz) for
fuzzy equal, fuzzy less than and fuzzy great than

ec FUZZY-REASONING is
import FUZZY-ARITHM

op fgeq : Fuzzy-number, Fuzzy-number -> Uni-intvl’
op fleq : Fuzzy-number, Fuzzy-number -> Uni-intvl

op fequal : Fuzzy-number, Fuzzy-number -> Uni-intvl
op inf : Real -> Uni-intvl

%% definition of fuzzy equal
definition of fequal is

axiom
fa(f1: Fuzzv-number, f2: Fuzzy-number, x: Real)
fequal(f1, £2)=
inf (pluc{one,
inv-plus(abs(plus(relax(between-zero-one?) (£1(x)),
inv-plus(relax(between-zero-one?) (£2(x))))))))
end-definition

%%k definition of fuzzy greater than and equal

definition of fgeq is
axiom
fa(f1: Fuzzy-number, f2: Fuzzy-number, x: Real)
fgeq(fl, £2)=
inf (min(one,
plus(plus(one,
relax(between-zero-one?) (f1(x))),
inv-plus(relax(between-zero-one?) (£2(x))))))
end-definition

133

%% definition of fuzzy less than and equal
definition of fleq is
axiom
fa(f1: Fuzzy-number, f2: Fuzzy-number, x: Real)
fleq(f1, £2)=
inf (min(one,
plus(plus(one,
relax(between-zero-one?) (f2(x))),
inv-plus(relax(between-zero-one?) (£1(x))))))
end-definition

end-spec

%% Formal Information Fusion Library Specs

%% Image specification: IMAGE

%% Author: Jingsong Li

%% Created: Aug.1l, 1998

%% Last updated: Nov. 20, 1999

%% Comments: Image is defined as a function sort
%% Image = Integer, Integer -> Real

'l in-package("SPEC")
1! in-grammar (’ispec-grammar)

spec IMAGE is
import INTEGER, REAL
sort Image
%% Image is a function sort
sort-axiom Image = Integer, Integer -> Real

end-spec

%% Formal Information Fusion Library Specs

%% Fuzzification specification: FUZZIFICATION

%% Author: Jingsong Li

%% Created: Aug.1, 1998

%% Last updated: Nov. 20, 1998

%% Comments: General fuzzification spec is the colimit of

134

o

IMAGE, FUZZY-ARITHM

%% Last updated: Dec. 10, 1999
%% Comments: General fuzzification spec is the colimit of

o

1
'

IMAGE, FUZZY-REASONING

in-package ("SPEC")
in-grammar (’ ispec-grammar)

spec ONE-SORT is
sort X
end-spec

o

General fuzzification

spec FUZZIFICATION is

import

translate

colimit of

diagram
nodes ONE-SORT, IMAGE, FUZZY-REASONING

arcs

ONE-SORT -> IMAGE : {X -> Real},
ONE-SORT -> FUZZY-REASONING : {X -> Real}

end-diagram

by{fuzzy-reasoning-Nonzero-2 -> Nz,

fuzzy-reasoning-zero-2 -> nzero,
fuzzy-reasoning-one-2 -> none,
fuzzy-reasoning-plus-2 -> nplus,
fuzzy-reasoning-inv-plus-2 -> ninv-plus,
fuzzy-reasoning-times-2 -> ntimes,
fuzzy-reasoning-nonzero?-2 -> nnonzero?}

end-spec

Wb
Tolh
Wb
hlh
Tolh
olh
hlh
T
o
A
A

Formal Information Fusion Library Specs

Triangular Fuzzification specification: TRI-FUZZIFY
Author: Jingsong Li

Created: Feb.1, 1999

Last updated: July. 20, 1999

Comments: Triangular fuzzification method is specified
Modified: Oct. 10, 1999

Added components: fuzzify : a Larger-than label
Modified: Oct. 26, 1999

Added components: fuzzify-1 : a Smaller-than label
Modified: July 8, 2000

135

%% Added an op: tri-fuzzify-image to map Image to Tri-fuzzy-image

Il in-package("SPEC")
Il in-grammar(’ispec-grammar)

%% Triangular fuzzification version
%% op tri-fuzzify is to generate a triangular membership
%% function for each crisp value, define an Around label.
%% Uncerainty level is given as a const -
%% op tri-fuzzify-2 deals with the situation when
%% uncertainty level is zero
spec TRI-FUZZIFY is

import FUZZIFICATION

sorts Tri-fuzzy-image

op uni-min : Uni-intvl, Uni-intvl -> Uni-intvl

op fuzzify : Real, Nz -> Fuzzy-number

op fuzzify-1l : Real, Nz, -> Fuzzy-number

op tri-fuzzify : Real, - Nz -> Fuzzy-number

op tri-fuzzify-2 : Real -> Fuzzy-number

op tri-fuzzify-image : Image, Nz -> Tri-fuzzy-image

%% delta is the uncertainty level of the fuzzifying.
const delta : Nz

sort-axiom Tri-fuzzy-image = Integer, Integer -> Fuzzy-number

axiom fa(ul: Uni-intvl, u2: Uni-intvl)

(uni-min(ul, u2) = ul <=>

legx (relax(between-zero-one?) (ul),
relax(between-zero-one?) (u2))

or

uni-min(ul, u2) = u2 <=>

legx(relax(between-zero-one?) (u2),
relax(between-zero-one?) (ul)))

definition of tri-fuzzify is
axiom fa(e: Real, f: Fuzzy-number)
(tri-fuzzify(e, delta) = f <=>
(fa(x: Real)
(1tx(x,
nplus(e,
ninv-plus(relax(nnonzero?) (delta))))
or

136

1tx(nplus(e, relax(unnonzero?)(delta)), x)
<=>
relax(between-zero-one?) (f (x))= nzero)
or
(leqx(nplus(e, ninv-plus(relax(nnonzero?)(delta))), x) &
legx(x, e) <=>
relax(between-zero-one?) (f(x)) =
div(nplus(x,
ninv-plus(nplus(e,
ninv-plus(relax
(nnonzero?) (delta))))),
delta))
or
(legx(e, x) &
legx(x, nplus(e, relax(nnonzero?)(delta))) <=>
relax(between-zero-one?) (f(x)) =
div(nplus(nplus(e,
relax(nnonzero?) (delta)),
ninv-plus(x)),
delta))))

end-definition

definition of tri-fuzzify-2 is
axiom fa(e: Real, f: Fuzzy-number)
(tri-fuzzify-2(e) = f <=>

(fa(x: Real)

(Qtx(x, e)

or

ltx(e, x)

<=>

relax(between-zero-one?) (f(x))= nzero)
or

(legx(x, e)

&

leqx(e, x)

<=>

relax(between-zero-one?) (f(x))= none)))
end-definition

%/ definition of fuzzification of Image

%% axiom fa(I: Image, x: Integer, y: Integer,

%% F: Tri-fuzzy-image)

W (F(x, y) = tri-fuzzify(I(x, y), delta))
definition of tri-fuzzify-image is

137

axiom fa(I: Image, F: Tri-fuzzy-image)
(tri-fuzzify-image(I, delta) = F <=>
fa(x: Integer, y: Integer)

(F(x, y) = tri-fuzzify(I(x, y), delta)))
end-definition

%% axioms for fuzzify and fuzzify-1

definition of fuzzify is
axiom fa(e: Real, f: Fuzzy-number, X: Real)
(fuzzify(e, delta)(x) = tri-fuzzify(e, delta)(x) <=>
1tx(x, e)
or
relax(between-zero-one?) (fuzzify(e, delta)(x)) = none <=>
legx(e, x))
end-definition

definition of fuzzify-1 is
axiom fa(e: Real, f: Fuzzy-number, x: Real)
(fuzzify(e, delta)(x) = tri-fuzzify(e, delta)(x) <=>
1tx(e, x)
or
relax(between-zero-one?) (fuzzify(e, delta)(x)) = none <=>
legx(x, e))

end-definition

end-spec

%% Formal Information Fusion Library Specs

%% Trapezoidal Fuzzification specification: TRa-FUZZIFY

%% Author: Jingsong Li

%% Created: Feb.16, 1999

%% Last updated: July. 21, 1999

%% Comments: Trapezoidal fuzzification method is specified

%% Modified: July 8, 2000

%% Added an op: tra-fuzzify-image to map Image to Tra-fuzzy-image

138

'l in-package("SPEC")
! in-grammar (’ispec-grammar)

%% Trapezoidal fuzzification version

%% op tra-fuzzify is to generate a trapezoidal membership
%% function for each crisp value, define an Around label.
%% Uncerainty level is given as two consts

%% op tra-fuzzify-2 deals with the situation when

%% uncertainty level is zero

spec TRA-FUZZIFY is
import FUZZIFICATION

sorts Tra-fuzzy-image

op tra-fuzzify : Real, Nz, Nz -> Fuzzy-number
op tra-fuzzify-2 : Real -> Fuzzy-number
op tra-fuzzify-image : Image, Nz, Nz -> Tra-fuzzy-image

%% deltal + delta2 is the uncertainty level of the fuzzifying.
const deltal : Nz
const delta2 : Nz

sort-axiom Tra-fuzzy-image = Integer, Integer -> Fuzzy-number

definition of tra-fuzzify is

axiom fa(e: Real, f: Fuzzy-number)

(tra-fuzzify(e, deltal, delta2) = f <=> ot

(fa(x: Real) :
1tx(x,
nplus(e,

ninv-plus(nplus(relax(nnonzero?) (deltal),
relax(nnonzero?) (delta2)))))

or

1tx(nplus(e, nplus(relax(nnonzero?)(deltal),
relax(nnonzero?) (delta2))), x)

<=>

relax(between-zero-one?) (f (x))= nzero)

or

(leqx(nplus(e, ninv-plus(relax(nnonzero?)(deltal))), x) &

legx(x, nplus(e, relax(nnonzero?)(deltal))) <=>

relax(between-zero-one?) (£ (x))= none)

or

(leqx(nplus(e, ninv-plus(nplus(relax(nnonzero?)(deltal),

139

relax(nnonzero?) (delta2)))),
x) &
leqx(x, nplus(e, ninv-plus(relax(nnonzero?)(deltal))))
<=>
relax(between-zero-one?) (f(x)) =
div(nplus(x,
ninv-plus(nplus(e,
ninv-plus(nplus
(relax(nnonzero?) (deltal),
relax(nnonzero?) (delta2)))))),
delta2))
or
(legx(nplus(e, relax(nnonzero?) (deltal)), x) &
legx(x, nplus(e, nplus(relax(nnonzero?)(deltal),
relax(nnonzero?) (delta2))))
<=>
relax(between-zero-one?) (f(x)) =
div(nplus(nplus(e,
nplus(relax(nnonzero?) (deltal),
relax(nnonzero?) (delta2))),
ninv-plus(x)),
delta2))))

end-definition

definition of tra-fuzzify-2 is
axiom fa(e: Real, f: Fuzzy-number)
(tra-fuzzify-2(e) = £ <=>

(fa(x: Real)

(1tx(x, e)

or

1tx(e, x)

<=>

relax(between-zero-one?) (f (x))= nzero)
or

(legx(x, e)

&

legx(e, x)

<=>

relax(between-zero-one?) (f (x))= none)))
end-definition

%% definition of fuzzification of Image
%% axiom fa(I: Image, x: Integer, y: Integer,

%% F: Tra-fuzzy-image)

140

% (F(x, y) = tra-fuzzify(I(x, y), deltal, delta2))

definition of tra-fuzzify-image is
axiom fa(I: Image, F: Tra-fuzzy-image)
(tra-fuzzify-image(I, deltal, delta2) = F <=>
fa(x: Integer, y: Integer)

(F(x, y) = tra-fuzzify(I(x, y), deltal, delta2)))
end-definition

end-spec

%% Formal Information Fusion Library Specs

%% Guassian Fuzzification specification: GUASS-FUZZIFY

%% Author: Jingsong Li

%% Created: June 10, 1999

%% Last updated: July. 21, 1999

%% Comments: Guassian fuzzification method is specified

%% Modified: July 8, 2000

%% Added an op : guass—-fuzzify-image to map Image to Guass-fuzzy-image

!'! in-package ("SPEC")
I' in-grammar(’ispec-grammar)

%% Guassian fuzzification version

%% op guass-fuzzify is to generate a Guassian membership
%% function for each crisp value.. define an Around label.
%% Uncerainty level is given a> two consts

%% op guass-fuzzify-2 deals wicn the situation when

%% uncertainty level is zero

spec GUASS-FUZZIFY is
import FUZZIFICATION

sorts Guass-fuzzy-image

op exp : Real -> Real
op square : Real -> Real

op guass-fuzzify : Real, Nz, Nz -> Fuzzy-number
op guass-fuzzify-2 : Real -> Fuzzy-number
op guass-fuzzify-image : Image, Nz, Nz -> Guass-fuzzy-image

%% delta is the uncertainty level of the fuzzifying.

141

const sigma : Nz
const mu : Nz

sort-axiom Guass-fuzzy-image = Integer, Integer -> Fuzzy-number

definition of guass-fuzzify is
axiom fa(e: Real, f: Fuzzy-number)
(guass-fuzzify(e, sigma, mu) = f <=>
(fa(x: Real)
f(x)= exp(ninv-plus(square
(div
(nplus(e,
ninv-plus(relax(nnonzero?) (mu))),
relax(nnonzero?) (sigma)))))))
end-definition

definition of guass-fuzzify-2 is
axiom fa(e: Real, f: Fuzzy-number)
(guass-fuzzify-2(e) = £ <=>

(fa(x: Real)

(1tx(x, e)

or

1tx(e, x)

<=>

relax(between-zero-one?) (f (x))= nzero)
or

(legx(x, e)

& :

leqx(e, x)

<=>

relax(between-zero-one?) (f(x))= none)))
end-definition

%% definition of fuzzification of Image

%% axiom fa(I: Image, x: Integer, y: Integer,

%% F: Guass-fuzzy-image)

%% (F(x, y) = guass-fuzzify(I(x, y), sigma, mu))

definition of guass-fuzzify-image is

axiom fa(I: Image, F: Guass-fuzzy-image)

(guass-fuzzify-image(I, sigma, mu) = F <=>
fa(x: Integer, y: Integer) _
(F(x, y) = guass-fuzzify(I(x, y), sigma, mu)))

end-definition

142

end-spec

hh
o
hh
ok
Tolb
hh

ho
otk
T
o

sp

Wh

Formal Information Fusion Library Specs
Defuzzification specification: DEFUZZIFICATION
Author: Jingsong Li

Created: July 6, 1999

Last updated: Sept. 24, 1999

Comments- defuzzification method is specified

in-package ("SPEC")
in-grammar (’ ispec-grammar)

One version of defuzzification

defuzzify(F) = (inf(M) + sup(M))/2

M=an interval [z] s.t. F(z) = height(F) = one
the height of fuzzy number is one

ec DEFUZZIFICATION is
import FUZZY-NUMBER

sort Intvl
sort Intvl is a subsort of Set-of-Real
sort-axiom Intvl = Set-of-real

op defuzzify-1 : Fuzzy-number -> Real
op inf : Zatvl .-> Real

op sup : intvl -> Real

op height_intvl: Fuzzy-number -> Intvl
op div : Real, Real -> Real

definition of defuzzify-1 is
axiom fa(F: Fuzzy-number)
defuzzify-1(F) = div(plus(inf(height_intvl(F)),
sup (height_intvl(F))),
plus(one,one))
end-definition

Definition of inf is

axiom fa(I: Intvl, a: Real, x: Real)
(inf(I)=a

<=>

143

(in(x, I)
=> legx(a, x)))
end-definition

definition of sup is
axiom fa(I: Intvl, a: Real, x: Real)
(sup(I)=a <=>
(in(x, I)
=> leqgx(x, a)))
end-definition

definition of height_intvl is

axiom fa(F: Fuzzy-number, I: Intvl, x: Real)
(height_intvl(F) = I <=>
(relax(between-zero-one?) (F(x)) = one <=> in(x, I)))

end-definition

end-spec

%% Formal Information Fusion Library Specs

%% Defuzzification specification: DEFUZZIFICATION-2
%% Author: Jingsong Li

%% Created: Sept. 24, 1999

%% Last updated: Sept. 24, 1999

%% Comments: defuzzification method is specified

Il in-package("SPEC") _

'l in-grammar (’ispec-grammar)

%% One version of defuzzification
%% defuzzify-2(F) = (inf(M) + sup(M))/2
%% M=an interval [z] s.t. F(z) = alpha-cut of F

spec DEFUZZIFICATION-2 is
import FUZZY-NUMBER

sort Intvl
%% sort Intvl is a subsort of Set-of-Real
sort-axiom Intvl = Set-of-real

op defuzzify-2 : Fuzzy-number -> Real
op inf : Intvl -> Real
op sup : Intvl -> Real

144

op alpha_intvl: Fuzzy-number -> Intvl
op div : Real, Real -> Real

const aipha : Uni-intvl

definition of defuzzify-2 is
axiom fa(F: Fuzzy-number)
(defuzzify-2(F) = div(plus(inf(alpha_intvl(F)),
sup(alpha_intvl(F))),
plus(one,one)))
end-definition

definition of inf is
axiom fa(I: Intvl, a: Real, x: Real)

(inf(I)=a
<=>
(in(x, I)

=> leqx(a, x)))
end-definition

definition of sup is
axiom fa(I: Intvl, a: Real, x: Real)
(sup(I)=a <=>
(in(x, I)
=> leqgx(x, a)))
end-definition

definition of alpha_intvl is
axiom fa(F: Fuzzy-number, I: Intvl, x: Real)
(alpha_intvl(F) = I <=>
(F(x) = alpha <=> in(x, I)))
end-definition

end-spec

%% Formal Information Fusion Library Specs

%% Edge point specification : EDGE-POINT

%% Author: Jingsong Li

%% Created: Aug. 2,1998

%% Last updated: Nov. 22,1998

%% Comments: Laplacian-based algorithm is used to derive edge point
%k Edge-point?(x, y) <=> grad(x, y) = 0 ~ var(x, y) > thrd

%k Modified: Jan. 12,2001 by Gulsah Cakiroglu

145

%% Modified the signiture of ops grad, var, edge-point?, etc.

1! in-package("SPEC")
!l in-grammar(’ispec-grammar)

spec EDGE-POINT is
import IMAGE

sort Edge-point

const thrd : Real

op edge-point? : Image, Integer, Integer -> Boolean
op grad : Image, Integer, Integer -> Real

op var : Image, Integer, Integer -> Real

op ysum : Image, Integer, Integer -> Real

op elmt : Image, Integer, Integer -> Real

op m : Image, Integer, Integer -> Real

op sub : Image, Integer, Integer -> Real

sort-axiom Edge-point = (Image, Integer, Integer) | edge-point?

%% definition of Laplacian
definition of grad is
axiom grad is
fa(I:Image, x: Integer, y: Integer)
(grad(I, x, y) =
plus
(plus
(plus(I(plus(x, ome), y),
I(plus(x, inv-plus(ome)), y)),
plus(I(x, plus(y, ome)),
I(x, plus(y, inv-plus(one))))),
inv-plus(plus
(plus(I(x, y),I(x, y)),
plus(I(x, y),I(x, ¥))))))
end-definition

definition of sub is
axiom sub is
fa(I:Image, x: Integer, y: Integer)
(sub(I, x, y) =

plus

(plus

146

(plus
(I(x, plus(y, inv-plus(plus(one, one)))),
I(x, plus(y, inv-plus(one)))),
plus
(I(x, y),
I(x, plus(y, one)))),
I(x, plus(y, plus(one, one)))))
end-definition

definition of m is
axiom m is
fa(I:Image, x: Integer, y: Integer)
(mn(I, x, y) =
(plus
(plus
(plus
(sub(I, plus(x, inv-plus(plus(one, ome))), y),
sub(I, plus(x, inv-plus(omne)), y)),
plus
(sub(I, x, V),
sub(I, plus(x, omne), y))),
sub(I, plus(x, plus(one, one)), y))))
end-definition

definition of elmt is
axiom elmt is
fa(I:Image, x: Integer, y: Integer)
(elmt(I,x, y) =
(times (plus(I(x, y), inv-plus(m(I,x, y))),
plus(I(x, y), inv-plus(m(I,x, y))))))
end-definition

definition of ysum is
axiom ysum is
fa(I:Image, x: Integer, y: Integer)
(ysum(I, x, y) =
(plus
(plus
(plus
(elmt (I, x, plus(y, inv-plus(plus(one, one)))),
elmt (I, x, plus(y, inv-plus(one)))),
plus
(elmt(I, x, y),
elmt (I, x, plus(y, one)))),
elmt (I, x, plus(y, plus(one, one))))))

147

end-definition

%% definition of local variance
definition of var is
axiom var is
fa(I:Image, x: Integer, y: Integer)
(var(I, x, y) =
(plus
(plus
(plus
(ysum(I, plus(x, inv-plus(plus(one, one))), y),
ysum(I, plus(x, inv-plus(one)), y)),
plus
(ysum(I, x, y),
ysum(I, plus(x, one), y))),
ysum(I, plus(x, plus(one, one)), y))))
end-definition

%% definition of edge-point
definition of edge-point? is
axiom edge-point?(I, x, y) <=>
(grad(I, x, y) = zero &
complete-order-1t-2(thrd, var(I, x, y)))
end-definition

end-spec

%% Formal Information Fusion Library Specs
%% Edge point specification : EDGE

%% Author: Jingsong Li

%% Created: Aug. 2,1998

%% Last updated: Nov. 22,1998

! in-package("SPEC")
Il in-grammar (’ispec-grammar)

il
%% specification for EDGE
hh
spec EDGE is
import EDGE-POINT
sort Edge
op edge? : Image, Integer, Integer, Integer, Integer -> Boolean

148

sort-axiom Edge = (Image, Integer, Integer, Integer, Integer) | edge?

%% definition of edge
definition of edge? is
axiom edge?(I, x1, y1, x2, y2) <=>
(edge-point?(I, x1, yl1) &
edge-point?(I, x2, y2) &

(y2 =yl &
(fa (x: Integer) (leq(x, x2) &
1t(x1, x) =>
edge-point?(I, x, y1))))
or
(x2 = x1 &
(fa (y: Integer) (leq(y, y2) &
1t(yl, y) =>
edge-point?(I, x1, y))))
or

(fa (x: Integer, y: Integer)
(1t(y, y2) &

leq(yl, y) &

1t(x, x2) &

leq(xl, x) =>

edge-point?(I, plus(x, omne), plus(y, one))))))

end-definition
end-spec

149

Chapter 10
Appendix C: Code for Chapter 5

function Y=wpd(x)

Y= = m oSS oosmooooooTm T YA
% WPD: Wavelet Packet Decomposition A
% By Zbigniew Korona ‘ A
yA April 1995 Y
°/° °/0
% Purpose: This program uses a Wavelet Packet Decomposition %
% (WPD) algorithm to transform signal "x[]" from time 7%
A domain into time/frequency domain Y[J[]. %
Yy oSS mommomoo o %

global NLEV LOF HIF %3 ...
len=length(x);
Y=zeros(len,NLEV);
Y(:,1)=x";
for 1=1:NLEV-1
p=1+1;
nb=2"(1-1)-1;
for b=0:nb
q = 2%Db;
r=rem(b,2);
i = ix1b(1,b);
a=circonv(Y(i,1),LOF,1);
Y(ixlb(p,q+r),p)= a(1:2:1length(a));
a=circonv(shift(Y(i,1),1),HIF(length(HIF):-1:1),-1);
Y(ixlb(p,q+1-r),p)=a(1:2:1length(a));
end
end

% end{wpd}

150

function statt
Y simulation with one noise level

clear all;

global SIGNUM RELATFI SIGLEN NOISZ NCLASS TSIGNUM

tic Ystart measure time

SIGNUM = 100; % signals in learning database
initdata;
initwpd;

load testsignalsdb.dat;
load testnoisedb.dat;
load trainingdata.dat;

[mdfeatRel,mdbmask]=getMDB(trainingdata)
ddata=dcomsiginMDB (mdbmask,trainingdata) ;

bestFI=getbestFI(ddata,mdbmask)

SIGNUM = 600; % signals in learning database
initwpd;

[mdfeatRel,mdbmask] =getMDB(tests .gnalsdb)
testdata=dcomsiginMDB(mdbmask,t<stsignalsdb) ;

b

2 bl

YbestRel = [1,3,3,3,3;3,1,1,1,3;1,1,1,1,2;1,1,1,1
3,1;1,1,2,1,3;1,1,2,2,3;2,1,3,3,1;2,2,3,3,3;2,3,3,
bestRel = [1,1,1,1,1;3,3,3,3,1]
testFIonTDB(testdata,testnoisedb,bestRel,mdfeatRel);
toc %stop measure time

,3;1,1,1,2,3;1,1,1
1,3;2,3,3,3,1;2,3,3,3,3];

% end{statt}

function [errorm, errors] = sclcom(data,ttdata,tncelem,tnclass)

% SCLCOM: Script CLassification COMparison for /A

% the problem triangle/rectangle recognition 7%
% By Zbigniew Korona %
% December 1995 %
/A %
% Purpose: This program compares the misclassification rates of’
yA the AFBRS (errorm) vs. the MDWC-based method (errors). %
% "data" is the reference database. "ttdata" is %
% the test database, "tnclass" is the number of classes %
% in the test database, "tncelem" is the number of signals %
% belonging to one class. A
et %

global wim bim w2m b2m w3m b3m nntrmi

global w1 bl w2 b2 w3 b3 nntri

global knumber bkindexm bkindex
[bmdfeaturem,bkindexm,bmdfeature,bkindex,knumber]=sfextcom(data) ;

% feature selection

feattrainm=feattrt(bmdfeaturem) ;
(wim,blm,w2m,b2m,w3m,b3m,nntrm] =trainmdft(feattrainm);

% backpropagation training using AFBRS
nntrmi=round(nntrm) ;

feattrain=feattrt(bmdfeature);
[wi,bl,w2,b2,w3,b3,nntr]=trainmdft(feattrain);

% backpropagation training using MDWC

nntri=round(nntr);

tbmdfeaturem=bmdfeat(bkindexm,knumber,ttdata,tnclass,tncelem);
% model theory based feature extraction
tbmdfeature=bmdfeat (bkindex, knumber,ttdata,tnclass,tncelem);
% MDWC-based feature extraction
feattestm=featttt(tbmdfeaturem,tnclass,tncelem);

152

classificationm=classif (feattestm,wim,bim,w2m,b2m,w3m,b3m);
classificationmi=round(classificationm);
errorm=100*sumsqr (classificationmi-nntrmi)/(2*tnclass*tncelem(1))

feattest=featttt(tbmdfeature,tnclass,tncelem);
classification=classif (feattest,wl,bl,w2,b2,w3,b3);
classificationi=round(classification);

errors=100*sumsqr(classificationi-nntri)/(2*tnclass*tncelem(1))

% end{sclcom?}

function i = ix1b(1,b)

USSR R
yA

% IXLB: IndeXes for Level-1 Box-b cells in WPD
/A By Zbigniew Korona "
% April 1995

A

% Purpose: This program calculates indexes "i[]" for a vector created
% from the WPD matrix.

%

PRI EEESESIENESSHBHBMIL L

global FSCALE

2~ (FSCALE 1-1);
[b*n+1:(L+1)*n];

B
I

% end{ix1b}

function bestFI=getbestFI(data,mdbmask)

% relFI is a matrix 243x5 all possible 5-element relations
% selection is a matrix of all possible combinations

% of 5 elements out of signal_length

% data is a matrix of signals

% disp(’1< 2= 3>’); '

% bestFI is a matrix 2x5 representing relation for

% each class of signals

133

%
)
A
)
b
yA
yA
yA
b
%

global SIGNUM NCLASS SIGLEN RELATFI NOISE
disp(’checking FI’);

%load relFI.dat;
relFI = [1,3,3,3,3;3,1,1,1,3;1,1,1,1,2;1,1,1,1,3;1,1,1,2,3;1,1,1,3,1;1,1,2,
1,3;1,1,2,2,3;2,1,3,3,1;2,2,3,3,3;2,3,3,1,3;2,3,3,3,1;2,3,3,3,3];

k=1;

isFIOK=1;
relSize=size(relFI,1);
bestFI=zeros (NCLASS,RELATFI);
load bestRel.dat;
bestFI=bestRel;

trgindx=1;

rctindx=1;

bestFI(1,:)=relFI(1,:);
bestFI(2,:)=relFI(1,:);
bestGainclass1=0;
bestGainclass2=0;

snrclassif = zeros(SIGNUM,1);
siginclass=SIGNUM/NCLASS;
start=1;

ending=relSize;

snrtodisplay=zeros(SIGNUM,4);
load trainingnoise.dat;
noise = trainingnoise;

for o=1:SIGNUM
snr(o)=getSNR(data(o,:) ,noise(o,:));
snrtodisplay(o,1)=o0;
snrtodisplay(o,2)=snr(o);

end

for i=start:ending J%for all FI relations
j=i-start+i;
relFI(i,:)

for class=1:2

p1=0; p2=0; n1=0; n2=0;pos=0;neg=0;gain=0;
snrtodisplay(:,class+2)=zeros(SIGNUM,1);

154

% consider only two classes of signals

if (class==1)

lower = 1;

upper = 50;
else

lower = 51;

upper = 100;
end

for sg=lower:upper

%for all signal in the class

isFIOK=checkFI(data(sg,:),relFI(i,:));

if (isFIOK==1)

snrtodisplay(sg,2+class)=snrtodisplay(sg,2+class)+1;

if (class==1)

snrclassif (sg)=snrclassif (sg)+1;

end
else
if (class==2)

snrclassif (sg)=snrclassif (sg)+1;

end
end

[pl,nl,p2,n2,pos,neg]=getC1assDistribution(
isFIOK,class,pl,nl,p2,n2,pos,neg,sg);

end

distrFI(j,:)=[p1,n1,p2,n2]

[entrop,gain]=entropy(distrFI(j,:),pos)

if (class==1)

if (gain>=bestGainclassl)

distrFI(j,:)=[p1,n1,p2,n2];

bestGainclassl=gain;

bestFITRG(trgindx, :)=relFI(i,:);

trgindx=trgindx+1;
snrtodisplay(:,3);

bestDistribl

relIndx(1)=2+j;

end
else

if (gain>=bestGainclass2)

distrFI(j,:)=[p1,n1,p2,n2];

bestGainclass2=gain;

bestFIRCT (rctindx, :)=relFI(i,:);

rctindx=rctindx+1;

bestDistrib2 = snrtodisplay(:,4);

relIndx(2)=2+j;

155

end
end
end
end

bestFITRG

bestFIRCT

bestFI=[1,1,1,1,1;3,3,3,3,1];

function [featRel,bastreen]=getMDB(data)

global RELATFI

[discmeastree,ppl=dmtre(data) ;

[bastree,bastreen,dmeas] =1dbtre(discmeastree);

knumber=RELATFI; % select as many features as the relation has

[kindex,featRel]=mdcom(bastreen,dmeas,pp,knumber) ;

function [ener, ennorm]=entfem(wpm)

T oo /A
b %
% ENTFEM: ENergy for Time/Frequency Energy Map yA
% By Zbigniew Korona A
yA April 1995 yA

A

A

% Purpose: This program calculates a time/frequency energy map 7%

YA "ener[] [J" for a signal "wpm[][]" represented in yA
% time/frequency domain (using WPD). "ennorm" is an energy %
yA of the original signal. %
0/° °/°
et A

global NLEV
wpm=wpm’ ;
nn=2"NLEV-1;
ener=zeros (NLEV,length(wpm(1,:)));
ennorm=sum(wpm(1,:).72);
for 1=1:NLEV
nb=2"(1-1)-1;
for b=0:nb
ener(1,ix1b(1,b))=wpm(l,ix1b(1,b)).

156

~2

% energy

%ener - matrix size(ener)=size(wpm)
end
end
%plotdpd (wpm) ;
% end{entfem}

function [dmtree,pp]=dmtre(data)

e e ———————
h

% DMTRE: Discriminant Measure TREe
yA By Zbigniew Korona
yA April 1995

%

% Purpose: This program calculates discriminant measure for

% each subbasis (dmtree[]) of the WPD matrix relative to

% the reference database (data) using relative entropy

% as a discriminant measure. "pp[][]" is a time/frequency

% map calculated for each class of signals.

A
S —

global NCLASS NCELEM

global NLEV FSCALE

nn=2"NLEV-1;

lend=2"FSCALE;

pp=zeros (NCLASS,NLEVx*lend) ;

for ic=1:NCLASS .
sener=zeros(NLEV,lend);

sennorm=0;
for k=1:NCELEM(ic)
if ic==
y=wpd (data(k,:));
else
y=wpd(data((ic-1)*NCELEM(ic-1)+k,:));
end

[ener, ennorm]=entfem(y);
sener=sener+ener;
Sennorm=sennorm+ennorm;
end
for 1=1:NLEV

157

h
h
A
A
h
h
h
h
b
h
h
h
h

nb=2"(1-1)-1;
for b=0:nb
index=(1-1)*lend+ix1b(1,b);

pp(ic,index)=sener(l,ix1b(1,b))/sennorm;

end
end
end

dmtree=zeros(i,nn);
for 1=1:NLEV
nb=2"(1-1)-1;
for b=0:nb
ib=2"(1-1)+b;
index=(1-1)*lend+ix1b(1,b);

dmtreep=zeros(size(1:length(index)));

for i=1:NCLASS-1
for j=i+1:NCLASS

df=pp(i,index) .*log2(pp(i,index)./pp(j,index));
dr=pp(j,index) .*log2(pp(j,index) ./pp(i,index));

dmtreep=dmtreep+df+dr;
end
end
dmtree(ib)=sum(dmtreep) ;
end
end

Y%end{dmtre}

function y = circonv(x,f,k)

A

i m e

% CIRCONV: CIRcular CONVolution
yA By Zbigniew Korona
VA April 1995

A

% Purpose: This program calculates circular convolution "y([]"
% of signal "x[]" with filter "f[]" using shift length "k".

/A

% ___

158

h
4
h
h
h
h
b
A
h
h

y = £(1)*x;
for i = 2:length(f)
x = shift(x,k);
if £(i)
y =y + £(i)*x;
end
end

Y%end{circonv}

function bmdf=bmdfeat(kindex,knumber,data,nclass,ncelem)

RIS S
YA

% BMDFEAT: Best Most Discriminant FEATures
yA By Zbigniew Korona ‘
YA April 1995

A

% Purpose: This program selects "knumber" of most discriminant

A wavelet coefficients (bmdf[][]) from the reference

% database (data) using "kindex" (ordered components of

YA most discriminant basis according to the discriminant

% power). "nclass" and "ncelem[]" are number of class

yA and the number of signals within one class respectively.

°/° -
% __

global NLEV FSCALE
nn=2"NLEV-1;
lend=2"FSCALE;
pp=zeros(nclass,NLEVxlend) ;
bmdf=zeros(length(data(:,1)),knumber);
for ic=1l:nclass
sener=zeros (NLEV, lend) ;
sennorm=0;
for k=1:ncelem(ic)
if ic==
y=wpd(data(k,:));
y=y(:);
else
y=wpd(data((ic-1)*ncelem(ic-1)+k,:));

y=y(:);

159

end
for j=1:knumber

if ic==
bmdf (k, j) =y (kindex(j));

else
bmdf ((ic-1)*ncelem(ic-1)+k, j)=y(kindex(j));

end

end
end
end

% end{bmdfeat}

function [data,noise]=signalgenB(intsgInSNR)
% rlength is a relation order

% signal has at least that length

global SIGLEN NOISELV SIGNUM NCLASS

disp(’Generating rectangles’);

pause(1);
repeatcount=1;
snginclss = SIGNUM/NCLASS; %number of signals in one class

snrminvalue=31;
snrmaxvalue=35;
snrange=68;

intsigOK = zeros(intsgInSNR+1,snrmaxvalue);
data = zeros(snginclss,SIGLEN);
rect=zeros(1,SIGLEN);

k=1;

row=2;

for i=1:snrmaxvalue
intsigOK(1,i)=1;
end

rand(’seed’,sum(100*clock));
noise=rand(snginclss ,SIGLEN)*NOISELV;
pause(0.1);

while(k™=snginclss+1l) %while less then sig in database
rect = zeros(1,SIGLEN);

160

rand(’seed’ ,sum(100*clock));
maxsignval=rand(1,1)+snrange;
pause(0.1);

rand(’seed’,sum(100*clock));
maxvalue=(NOISELV+rand(1,snginclss)*maxsignval) ;
minsiglength=5;

rand (’seed’ ,sum(100*clock));
begining=1+rand(1,1)*(SIGLEN-10) ;
pause(0.1);

rand(’seed’,sum(100*clock));
ending=begining+5+rand(1,1)*(SIGLEN-begining-6);
pause(0.1);

begining=round(begining);
ending=round(ending) ;
maxvalue=round (maxvalue) ;

for sig=1:1
for j=1:SIGLEN

if (ending(sig)-begining(sig)<minsiglength)
if (ending(sig)+minsiglength<SIGLEN)
ending(sig)=begining(sig)+minsiglength;
else
begining(sig)=endingfsig)-minsiglength;
end;
end;

if (j>begining(sig) & j<ending(sig))
rect(sig, j)=maxvalue(sig);
else
rect(sig,j)=0;
end;
end;
end;

temp(1,:)=rect(1,:)+noise(k,:);

%
snr = getSNR(temp(l,:),noise(k,:));
place = round(snr);

161

if (place>=snrminvalue & place<=snrmaxvalue)
notwritesignal=1;
while(notwritesignal)
if (intsigOK(row,place)<i)
intsigOK(row,place)=intsigUK(row,place)+1;
data(k, :)=temp(1,:);
notwritesignal=0;
k=k+1;
enda
row =row+l;
if (row>intsgInSNR+1)
notwritesignal=0;
repeatcount=repeatcount+1;
if (mod(repeatcount,40)==0)
snrange=snrange+1
snr
intsigOK’
end
end
end
end
row=2;

h

rect=zeros(1,128);

end; % while loop end

function [data,noisel=signalgenA(intsgInSNR)
global SIGLEN NOISELV SIGNUM NCLASS

disp(’Generating triangles’);

pause(1);
repeatcount=1;
snginclss = SIGNUM/NCLASS; %number of signals in one class

snrminvalue=31;
snrmaxvalue=35;
snrange=78;

intsigOK = zeros(intsgInSNR+1,snrmaxvalue);

162

data = zeros(snginclss,SIGLEN);
triang = zeros(1,SIGLEN);
row=2;

i=1

rand(’seed’,sum(100*clock));
noise=rand(snginclss ,SIGLEN)*NOISELV;

pause(0.2);

for i=1:snrmaxvalue
intsigOK(1,i)=1;
end

while(j~=snginclss+1) J%while less then sig in database
triang = zeros(1,SIGLEN);

rand(’seed’,sum(100*clock));
mval =rand(1,1)+snrange;
maxsignval=mval,;

temp =zeros(1,128);

rand (’seed’ ,sum(100*clock));
begining=1+rand(1,1)*(SIGLEN/2);
pause(0.1);

rand (’seed’ ,sum(100*clock));
ending=begining+5+rand(1,1)*(SIGLEN-begining-6) ;
pause(0.1);

rand(’seed’,sum(100*clock));
maxvalue=mval+rand(1,snginclss)*maxsignval;
pause(0.1);

rand(’seed’ ,sum(100*clock));
maxloc=begining+rand(1,1)*(SIGLEN-begining-5);
pause(0.1);

begining=round(begining);
ending=round(ending);
maxvalue=round (maxvalue) ;
value=0;
rand(’seed’,sum(100*clock));

for i=1:1

163

maxloc(i)=2+begining(i)+rand(1,1)*(ending(i)-begining(i)-4);
maxloc(i)=round(maxloc(i));
triang(i,maxloc(i))=maxvalue(i);

end;

for sig=1:1
1step=maxvalue(sig)/(maxloc(sig)-begining(sig));
value=maxvalue(sig) ;
for i=maxloc(sig):-1:begining(sig)
value=value-lstep;
if (value>0)
triang(sig,i)=value;
end;
end;
value=maxvalue(sig);
rstep=maxvalue(sig)/(ending(sig)-maxloc(sig));
for i=maxloc(sig):ending(sig)
value=value-rstep;
if (value>0)
triang(sig,i)=value;
end;
end;
end;

temp(1,:)=triang(1,:)+noise(j,:);

%
snr = getSNR(temp(1,:),noise(j :));
place = round(snr);

if (place>=snrminvalue & place<=snrmaxvalue)
notwritesignal=1;
while(notwritesignal)
if (intsigOK(row,place)<l)
intsigOK(row,place)=intsig0K(row,place)+1;
data(j, :)=temp(1,:);
triang(1,:)=zeros(1,128);
temp(1,:)=zeros(1,128);
J=j*1;
notwritesignal=0;
end
row =row+l;
if (row>intsgInSNR+1)
notwritesignal=0;
repeatcount=repeatcount+1;

164

if (mod(repeatcount,20)==0)
snrange = sanrange+l
intsigOK’
end
end
end
end
row=2;

yA
triang=zeros(1,128);
end; %while loop end

function plotsignals(signum,data)
sigdispl=25;

for i=1:signum/sigdispl
figure;
clf;
for j=(i-1)*sigdispl+1l:i*sigdispl
subplot(S,S,mod(mod(j-l,sigdispl)+1,sigdispl+1));
plot(data(j,:));
end
xlabel (’Database after decoposition in MDB’);
end

function [entrop,gain]=entropy(pn,pos)
% assumption is that for number of classes
% pn has corresponding number of rows

% for k classes it appears | pt nl p2 n2 | for relation

global NCLASS SIGNUM

P=pos;
n=(SIGNUM/NCLASS)-p;
entrop=1;

165

Inp=getInp(p,n)

for i=1:2
classEntrop(i)=getInp(pn(2*i-1),pn(2*i));
end

E=((pn(1)+pn(2))*classEntrop(1)+(pn(3)+pn(4))*classEntrop(2))/(n+p);

entrop=E;

gain=abs(Inp-E);

%save enthrop.dat enthrop -ascii;
%save gain.dat gain -ascii;

function generateSignalsDB(signum)

global SIGNUM RELATFI SIGLEN NOISE NCLASS TSIGNUM

initdata;
SIGNUM = signum; % signals in learning database
numofsnr = 10

load testsignalsdb.dat;
load testnoisedb.dat;
data = testsignalsdb;
noise = testnoisedb;

for 1=1:600
snr(i)=getSNR(data(i,:),noise(i,:));
end

snr = sort(snr);

figure

clf

title(’SNR Distribution’);
plot(snr);

xlabel(’Signal’);

ylabel(’Signal to Noise Ratio’);

snr = sort(round(snr));
figure
clf

166

title(’SNR Distribution II’);
plot(snr);

xlabel(’Signal’);

ylabel(’Signal to Noise Ratio’);

function data=datagen(intsginSNR)
global NCLASS SIGLEN RELATFI NOISELV SIGNUM

disp(’Generate signals database’);
pause(1);

snginclss = SIGNUM/NCLASS; %number of signals in one class
data = zeros(intsginSNR*SIGNUM, SIGLEN) ;

%[classA,noiseA]l=signalgenA(intsginSNR);
[classB,noiseB]=signalgenB(intsginSNR);
save gapsigrect.dat classB -ascii;

save gapnoiserect.dat noiseB -ascii;

data(1l:snginclss ,:)=classA;
data((snginclss +1):SIGNUM, :)=classB;
noise(1:snginclss, :)=noiseA;
noise((snginclss+1) :SIGNUM, :)=noiseB;

save gapsig.dat data -ascii;
save gapnoise.dat noise -ascii;

function [snrdata,classesDistr]=testFIonTDB(testdata,bestFI,noise)
% relFI is a 5-binary relationms
% testdata is a matrix of signals

Y disp(’1< 2= 3>7);

global SIGNUM NCLASS SIGLEN RELATFI

SNR=0;

isFIOK=0;

classApos=0;classBpos=0;

pos=0; % signals positively recognized by the relation

167

classesDistr=zeros(1,NCLASS);
siginclass=SIGNUM/NCLASS;
snrdata = zeros(3,27);

for i=1:NCLASS

for sg=((i-1)*siginclass+1): (i*siginclass)
isFIOK=checkFI(testdata(sg,:),bestFI(i,:));

SNR=getSNR(testdata(sg,:),noise(sg,:));
column = round(SNR+.51);

t=[SNR, column] ;

snrdata(l,column)=SNR;

if (isFIOK)
pos=pos+1;

if (i==1)
classApos=classApos+1;

elseif (i==2)
classBpos=classBpos+1;

end

snrdata(l,sg)=sg;

snrdata(2, column)=classApos;

snrdata(3, column)=classBpos;

end
end

classesDistr(i)=pos;
pos=0;
end

save snrdata.dat snrdata -ascii;

snrdata’
classesDistr

function y = shift(x,k)

% ___

/A SHIFT: linear SHIFT
/A By Zbigniew Korona
/A April 1995

A

168

b
b
h
h
A

% Purpose: This program calculates a shifted version "y[1" of %
YA the input signal "x[]" with a shift length "k". %

[r,c] = size(x);
n = max(r,c);
k = k-n*floor(k/n);
if c==1

y = [x(k+1:n);x(1:k)]; 7% up/down for col vector
else

y = [x(k+1:n),x(1:k)1; 7% left/right for row vector
end

% end{shift}

function plotdpd(dpd)

% Purpose:

%
%

Y - SO

PLOTDPD: PLOT Display of wavelet Packet Decomposition

By Zbigniew Korona
April 1995

This program plots function decomposed by means of WPD

(dpd) within an adequate decomposition structure.

global SIGLEN FSCALE CSCALE LEVELS

nin = nargin;
coarsest = max(CSCALE,FSCALE-7);
dpd = dpd’;

save dpd dpd -ascii;

figure;

clf;

x = linspace(0,1,SIGLEN);

bls = ’-’; % box line style is solid
blc = ’¢c’; % box line color is cyan
bhh = 0.5; % box half height
blw=2; % box line width

169

h
h
A
4
A
h

h
b
h

sbot = coarsest - bhh;

stop = FSCALE + bhh;

cla;
set(gca,’NextPlot’,’add’,’Box’,’on’,’XLim’,axlim(x),’YLim’,axlim(
[coarsest-0.5,FSCALE+0.5]));

for 1 = FSCALE-coarsest+1:-1:1
s = FSCALE-1+1;
sb s-bhh;
st s+bhh;
1ine([0,1], [sb,sb], ’LineStyle’,bls, ’Color’,blc, ’LineWidth’,blw);
nb = 2°(1-1);
for b=1:2:nb-1
pbox = b/nb;
line([pbox,pbox],[sbot,st],’LineStyle’,bls,’Color’,blc,’LineWidth’,blw);
end
end

line([O,l],[st,st],’LineStyle’,bls,’Color’,blc,’LinéWidth’,blw);
line([0,0],[sbot,stop],’LineStyle’,bls,’Color’,blc,’LineWidth’,blw);
line([1,1], [sbot,stop],’LineStyle’,bls, ’Color’,blc, ’LineWidth’,blw);

for 1 = FSCALE-coarsest+1:-1:1
mult = 1/(2*max(abs(dpd(1,:))+eps));
plotwpd (mult*dpd(1,:),x,FSCALE-1+1);

end

ylabel (’Resolution Level’);
xlabel (’Normalized Frequency’);

% end{plotdpd}

function [btre,btren,dmeas]=1ldbtre(dmtree)

ettt %
% /A
% LDBTRE: Local Discriminant Basis TREe %
% By Zbigniew Korona VA
A April 1995 yA
°/° °/0
% Purpose: This program finds most discriminant basis based on A
% discriminant measure tree (dmtree). "btre{]" is %
% a basis tree with most disriminant subbases and yA

170

h
h
A
h
h
h
A

their successors having value "1", "btren" is a basis
tree with only most disriminant subbases having value "1",
"dmeas" is ordered discriminant measure tree where
parent nodes have at least as much discriminant power

as sum of the discriminant power of their two children.

nn=length(dmtree) ;

n
b
b

1=1log2(nn+1); %=4
tre=zeros(size(dmtree));
tren=zeros(size(dmtree));

dmeas=dmtree;
nlnod=2"(nl-1);%=8

b
b
f

tre(nlnod:2*nlnod-1)=ones(1,nlnod);
tren(nlnod:2*nlnod-1)=ones(1,nlnod);

or 1=nl-1:-1:1

i1=2"(1-1);

for b=0:11-1 % i1-1=3
ipar=il+b; % ipar= from 1 to 7
cpar=dmeas(ipar); % reals at location ipar
ilch=2"1+2%b; % ilch = from 2 to 14
clch=dmeas(ilch); % real at location ilch
irch=2"1+2*b+1; % irch = from 3 to 15
crch=dmeas(irch); % real at location irch

cbch=clch+crch;

if cpar>=cbch
btre(ipar)=1;
btren(ipar)=1; o
btren(ilch)=0; . . - '
btren(irch)=0;

else
dmeas (ipar)=cbch;

end

end

end
% end{ldbtre}

function initwpd

global CSCALE HIF LOF FSCALE NLEV NCLASS NCELEM SIGNUM

FSCALE=7;

171

h
%
A
h

%
%

CSCALE=4;
NLEV=FSCALE-CSCALE+1;
NCELEM=zeros (size(1:NCLASS));

for jc=1:NCLASS
NCELEM(jc)=SIGNUM/NCLASS;
end

% the fcllowing are parameters used to build a lowpass filter
% using Daubechies_4 wavelet basis

p(1)=(1+sqrt(3));
p(2)=(3+sqrt(3));
p(3)=(3-sqrt(3));
p(4)=(1-sqrt(3));

p=p/norm(p) ;

% the following is a vector used to build a lowpass filter
% using Daubechies_4 wavelet basis

q=[p(4) -p(3) p(2) -p(1)];
LOF=p;

HIF=q;
% end{initwpd}

function initdata
global NCLASS SIGLEN RELATFI NOISELV SIGNUM TSIGNUM

RELATFI=5; 7% 5-nary relatio

NCLASS = 2; % class of signals
SIGLEN=2"7; ¥% signals length

NOISELV = 1; % noise level (max value)

function [pl,nl,p2,n2,pos,negl=getClassDistribution
(isFIOK,class,pl,nl,p2,n2,pos,neg,sg)

global NCLASS SIGNUM

172

if (isFIOK==1)
pos=pos+1;
else
neg=neg+1,
end

if (class==1)
if (isFIOK==1)
pl=pil+1;
else
n2=n2+1;
end
else % second class
if (isFIOK==0)
p2=p2+1;
else
nl=nil+1;
end
end

function SNRatio=petSNR(sg,noise)

global SIGLEN

signalenergy=sum(sg.~2)/SIGLEN;
noisenergy=sum(noise.~2)/SIGLEN;

temp=10*logl0(signalenergy/noisenergy);

if (temp<1)
SNRatio=0;
else
SNRatio=temp;
end

173

function inp=getInp(p,n)
prob =p/(p+n);

if (p*n>0)

temp=-(probxlog2(prob) + (1-prob)*log2(1-prob));
else

temp=0;
end

if (temp<0)
inp=0;
else
inp=temp;
end;

function ddata=dcomsiginMDB(mibmask,data)
global NCELEM NCLASS SIGLLi

rows=size(data,1);
~ cols=size(data,2);
ddata=zeros(rows,cols);
ddrows=1;
for i=1:4
for j=1:8
tempDecomp (i, j)=-1;
end
end

tempDecomp (4, :)=mdbmask(1,8:15) ;
tempDecomp(3,1:4)=mdbmask(1,4:7);
tempDecomp(2,1:2)=mdbmask(1,2:3);
tempDecomp(1,1)=mdbmask(1,1);

174

tempDecomp
mdbmask
lastpos=1;
J=3;

s=1;

for ic=1:NCLASS

for k=1:NCELEM(ic)
if ic==1
y=wpd(data(k,:));
else
y=wpd(data((ic-1)*NCELEM(ic-1)+k,:));
end
y=y’;
%plotdpd(y);
decompsig=zeros(1,SIGLEN) ;
sidx=1;
for i=4:-1:1
coef2pow=2"(i-1);
for j=1:coef2pow
if (tempDecomp(i,j)==1)
subbase=j;
elnum=SIGLEN/ (2" (i-1));
startel=(subbase-1)*elnum+i;
endelem=startel+elnum-1;
decompsig(l,sidx:sidx+elnum-1)=y(i,startel:endelem);
sidx=sidx+elnum;
end
end
end
ddatabis(ddrows, :)=decompsig;
%ddata(ddrows, :)=data(ddrows, :) .*decompsig;
ddata(ddrows, :)=decompsig;
ddrows=ddrows+1;
end
end
Ysave ddata.dat ddata -ascii;

function isFIOK=checkFI(signal,relFI)

% signal is a single signal from the DB
% relFI is a vector 1x5 (single relation to be checked)

175

Y mdbmask is a mask of most discriminant basis
global NCELEM NCLASS SIGLEN RELATFI NOISELV

p=1; %place in the signal

PCopy=p; % when restart form begining of the signal

q=2; %fixed place when binary relation satisfied
morechoises=1;

isFI0K=0;

birel=0; %binary relation

rp=1; % relation place 1st, 2nd, ...5th

for s=1:RELATFI
mout (s)=-1;
end

count=1;
%checking_rel = relFI

% while there is more elements in subbases to search for relation and
% the relation is not satisfied yet

while ((isFIOK==0) & (morechoises==1))
if (p+1<SIGLEN-rp)

% birel is binary relation between 2 componerts
if ((signal(p)>2) & (abs(signal(p)-signalig))<0.1+NOISELV))
birel=2;
elseif ((signal(p)+NOISELV)<signal(q))
birel=1;
elseif ((signal(p)-NOISELV)>signal(q))
birel=3;
end
else
morechoises=0;
end

if (relFI(rp)==birel)
mout (1,rp)=p;
mout (2,rp)=q;
rp=rp+1;
PCopy=p,;
P=4q; q=p+1;

176

if (rp>RELATFI)
isFIOK=1;
end

else
q=qt1;
if (g>128)

pcopy=p; % start from successing element of last start
p=pcopy+1; % pcopy ensures that we restart searching

qQ=p+1;
rp=1;
end

if (p+1>128-rp)
morechoises=0;
end
end
end % while loop

Ysave mout.dat mout -ascii;
%save tempout.dat tempout -ascii;

function relFI=buildrelFI(elements)

% passing argument is a vector 1xN

% and N is number of elements in relation
% disp(’1< 2= 3>’);

pointer = elements;

maxrel=3;

counter=1;

m=1;

for i=1:elements
location(i)=maxrel;
end;

for i=1:elements
birelation(i)=1;
pow(i)=elements-i;
end;

while (sum(birelation)<elements*maxrel)

177

relFI(m, :)=birelation;
m=m+1;

for idx=elements:-1:1

if (mod(counter,maxrel”pow(idx))==0)
birelation(idx)=1+mod(birelation(idx) ,maxrel);

end
end
counter=counter+l;
end;

relFI(m, :)=birelation;

function [lims,largest,smallest,range] = axlim(x)

% _______________________________

)

_______________________________ %

h

pA AXLIM: AXis LIMits A
% by Zbigniew Korona /A
YA April 1995 %
h %
% Purpose: This program calculates the "value" axis limits A
% for function x: 1ims[2] - lower and upper limit, largest - %
% maximum value, smallest - minimum value, range - the %
% the difference between the maximum and the minimum. %
A A
== oo b
c = 0.025; % margin scaling coefficient

largest = max(x);
smallest = min(x);
range = largest - smallest;

if range

margin = c*range;
else

margin = c*smallest;
end

lims(1) = smallest - margin;
lims(2) = largest + margin;

Y%end{axlim}

% margin

% lower limit
% upper limit

178

Bibliography

[1] Specware: Language manual, version 2.0.3. Technical rerort, Kestrel Institute, 1998.
2] Specware: User guide, version 2.0.3. Technical report, Kestrel Institute, 1998.

[3] Omg unified modeling language specification, version 1.3. Technical report, Object
Management Group, 1999.

[4] G. A. Baxes. Digital Image Processing. John Wiley & Sons, Inc., 1994.

[5] M. D. Bedworth and J. C. O'Brien. Pittfalls in data fusion (and how to avoid them).
In Proceedings of the Second International Conference on Information Fusion, Vol. 1,
pages 437-444, 1999.

[6] C. C. Chang and H. J. Keisler. Model Theory. North Holland, Amsterdam, New York,
Oxford, Tokyo, 1992.

[7] R. Coifman, R. and M. V. Wickerhauser. Entropy-based algorithms for best basis
selection. IEEE Transactions on Information Theory, 38, no.2:713-718, 1992.

[8] B. V. Dasarathy. Decision Fusion. IEEE Computer Society Press, 1994.

[9] B. V. Dasarathy. Sensor fusion potential exploitation _ iraovative architectures and
illustrative applications. Proceedings of IEEE, 85, No.1:24- 348, 1997.

[10] S. A. DeLoach and M. M. Kokar. Category theory approach to fusion of wavelet-based
features. In Proceedings of the Second International Conference on Information Fusion,
Vol. 1, pages 117-124, 1999.

[11] F. Galvin. Horn sentences. Annals of Mathematical Logic, 1:389-422, 1970.

[12] H. Gao, M. M. Kokar, and J. Weyman. An approach to automation of fusion using
specware. In Proceedings of the Second International Conference on Information Fusion,
Vol. 1, pages 109-116, 1999.

(13] D. L. Hall. Mathematical Techniques in Multisensor Data Fusion. Artech House, Boston
- London, 1992.

[14] L. Hong. Multiresolutional filtering using wavelet transform. IEEE Transactions on
Aerospace and Electronic Systems, 29(4):1244-1251, 1993.

179

[15] A. Horn. On sentences which are true of direct unions of algebras. Journal of Symbolic
Logic, 16:14-21, 1951.

[16] J. R. Jang and C. Sun. Neuro-fuzzy modeling and control. JEEE Transactions, 1995.

[17) H. J. Keisler. Reduced products and horn classes. Trans. Amer. Math. Soc. Ser.2,
81:307-328, 1965.

[18] G. J. Klir. On the alleged superiority of probabilistic representation of uncertainty.
IEEFE Transactions on Fuzzy Systems, 2, No.1, 1994.

[19] G. J. Klir and B. Yuan. Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice
Hall PTR, 1995. '

[20] G.J. Klir and B. Yuan. Fuzzy Set Theory Foundations and Applications. Prentice Hall
PTR, 1997.

[21] M. M. Kokar, M. D. Bedworth, and K. B. Frankel. A reference model for data fusion
systems. In Sensor Fusion: Architectures, Algorithms, and Applications IV, pages 191
202. SPIE, 2000.

[22] M. M. Kokar and Z. Korona. A formal approach to the design of feature-based multi-
sensor recognition systems. International Journal of Information Fusion (in print, 2001.

[23] M. M. Kokar, J. A. Tomasik, and J. Weyman. A formal approach to information fusion.
In Proceedings of the Second International Conference on Information Fusion, Vol 1,
pages 133-140, 1999.

[24] Z. Korona and M. M. Kokar. Lung sound recognition using model-theory based feature
selection. Applied Signal Processing, 5:152-169, 1998.

[25] J. Li, M. M. Kokar, and J. Weyman. Incorporating uncertainty into the formal devel-
opment of the fusion operator. In Proceedings of the Second International Conference
on Information Fusion, Vol. 1, pages 125-132, 1999.

[26] J. S. Lim. Two-Dimensional Signal and Image Processing. Prentice Hall, Inc., 1990.

[27] R. C. Luo and M. G. Kay. Multisensor integration and fusion in intelligent systems.
IEEE Transactions on Systems, Man and Cybernetics, 19-5:901-931, 1989.

[28] J. A. Makovsky. Why horn formulas matter in computer science: Initial structure and
generic examples. In CAAP’85 Arbres en Algebre et Programmation 10, pages 374-385,
1985.

[29] J.M. Manyika and H.F. Durrant-White. An information-theoretic approach to manage-
ment in decentralized data fusion. In Sensor Fusion V, volume 1828, pages 202-213.

SPIE, 1992.

180

[30] M. Markin, C. Harris, M. Bernhardt, J. Austin, M. Bedworth, P. Greenway, R. John-
ston, A. Little, and D. Lowe. Technology foresight on data fusion and data processing.
Publication of the Royal Aeronautical Society, 1997.

[31] E. A. Palyutin, J. Saffe, and S. S. Starchenko. Models of superstable horn theories.
Algebra i Logika, 24:278-326, 1985.

[32] B. C. Pierce. Basic Category Theory for Computer Scientists. MIT Press, 1991.
[33] R. J. Quinlan. Induction of decision trees. Machine Learning, 1:81-106, 1986.

[34] N. Saito. Local Feature Extraction and Its Applications Using a Library of Bases. PhD
thesis, Yale University, 1994.

[35] A. Shulsky. Silent Warfare: Understanding the World of Intelligence. Brassey’s, 1993.

[36] Y. V. Srinivas. Category theory: Definitions and examples. Technical Report TR-90-14,
University of California at Irvine, 1990.

[37] A.N. Steinberg, C. L. Bowman, and F. E. White. Revisions to the jdl data fusion model.
In Proceedings of the SPIE. Sensor Fusion: Architectures, Algorithms and Applications,
pages 430-441. SPIE, 1999.

[38] S. C. A. Thomopoulos. Dignet: a self-organizing neural network for automatic pattern
recognition, classification, and data fusion. In Sensor Fusion IV: Control Paradigms
and Data Structures, volume 1611, pages 478-495. SPIE, 1992. '

[39] J. Tomasik. On products of neat structures. Annals of Mathematical Logic, 36:12-16,
1976.

[40] P. K. Varshney. Distributed Detection and Data Fusion. Springer-Verlag, 1996.

[41] J. M. Wing. A specifier’s introducticu to formal methods. IFEE Computer, 9:8-24,
1990.

[42] L. A. Zadeh. Fuzzy logic. Computer, 21, No. 4:83-93, 1988.

181

